• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhang, Ting (Zhang, Ting.) | Waqas, Muhammad (Waqas, Muhammad.) | Liu, Zhaoying (Liu, Zhaoying.) | Tu, Shanshan (Tu, Shanshan.) | Halim, Zahid (Halim, Zahid.) | Rehman, Sadaqat Ur (Rehman, Sadaqat Ur.) | Li, Yujian (Li, Yujian.) | Han, Zhu (Han, Zhu.)

收录:

EI Scopus SCIE

摘要:

Convolutional neural networks (CNNs) have proven to be very successful in learning task specific computer vision features. To integrate features from different layers in standard CNNs, we present a fusing framework of shortcut convolutional neural networks (S-CNNs). This framework can fuse arbitrary scale features by adding weighted shortcut connections to the standard CNNs. Besides the framework, we propose a shortcut indicator (SI) of binary string to stand for a specific S-CNN shortcut style. Additionally, we design a learning algorithm for the proposed S-CNNs. Comprehensive experiments are conducted to compare its performances with standard CNNs on multiple benchmark datasets for different visual tasks. Empirical results show that if we choose an appropriate fusing style of shortcut connections with learnable weights, S-CNNs can perform better than standard CNNs regarding accuracy and stability in different activation functions and pooling schemes initializations, and occlusions. Moreover, S-CNNs are competitive with ResNets and can outperform GoogLeNet, DenseNets, Multi-scale CNN, and DeepID. (c) 2021 Elsevier Inc. All rights reserved.

关键词:

Shortcut connections Convolutional neural networks Computer vision

作者机构:

  • [ 1 ] [Zhang, Ting]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Waqas, Muhammad]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Liu, Zhaoying]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Tu, Shanshan]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 5 ] [Li, Yujian]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 6 ] [Waqas, Muhammad]GIK Inst Engn Sci & Technol, Fac Comp Sci & Engn, Topi, Pakistan
  • [ 7 ] [Halim, Zahid]GIK Inst Engn Sci & Technol, Fac Comp Sci & Engn, Topi, Pakistan
  • [ 8 ] [Rehman, Sadaqat Ur]Namal Inst Mianwali, Dept Comp Sci, Mianwali, Pakistan
  • [ 9 ] [Li, Yujian]Guilin Univ Elect Technol, Sch Artificial Intelligence, Guilin, Peoples R China
  • [ 10 ] [Han, Zhu]Univ Houston, Dept Elect & Comp Engn, Houston, TX 77004 USA
  • [ 11 ] [Han, Zhu]Univ Houston, Dept Comp Sci, Houston, TX 77004 USA

通讯作者信息:

  • [Liu, Zhaoying]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

INFORMATION SCIENCES

ISSN: 0020-0255

年份: 2021

卷: 579

页码: 685-699

8 . 1 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:87

JCR分区:1

被引次数:

WoS核心集被引频次: 11

SCOPUS被引频次: 12

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:612/3902831
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司