• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Li, Jian (Li, Jian.) | Liu, Haibin (Liu, Haibin.) (学者:刘海滨) | Yang, Zhijun (Yang, Zhijun.) | Han, Lei (Han, Lei.)

收录:

SSCI EI Scopus SCIE

摘要:

Currently existing credit risk models, e.g., Scoring Card and Extreme Gradient Boosting (XGBoost), usually have requirements for the capacity of modeling samples. The small sample size may result in the adverse outcomes for the trained models which may neither achieve the expected accuracy nor distinguish risks well. On the other hand, data acquisition can be difficult and restricted due to data protection regulations. In view of the above dilemma, this paper applies Generative Adversarial Nets (GAN) to the construction of small and micro enterprises (SMEs) credit risk model, and proposes a novel training method, namely G-XGBoost, based on the XGBoost model. A few batches of real data are selected to train GAN. When the generative network reaches Nash equilibrium, the network is used to generate pseudo data with the same distribution. The pseudo data is then combined with real data to form an amplified sample set. The amplified sample set is used to train XGBoost for credit risk prediction. The feasibility and advantages of the G-XGBoost model are demonstrated by comparing with the XGBoost model.

关键词:

作者机构:

  • [ 1 ] [Li, Jian]Beijing Univ Technol, Beijing, Peoples R China
  • [ 2 ] [Liu, Haibin]Beijing Univ Technol, Beijing, Peoples R China
  • [ 3 ] [Han, Lei]Beijing Univ Technol, Beijing, Peoples R China
  • [ 4 ] [Yang, Zhijun]Middlesex Univ, Fac Sci & Technol, Design Engn & Math Dept, London, England
  • [ 5 ] [Han, Lei]China Aerosp Acad Syst Sci & Engn, Beijing, Peoples R China

通讯作者信息:

  • 刘海滨

    [Liu, Haibin]Beijing Univ Technol, Beijing, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

APPLIED ARTIFICIAL INTELLIGENCE

ISSN: 0883-9514

年份: 2021

期: 15

卷: 35

页码: 1550-1566

2 . 8 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:87

JCR分区:2

被引次数:

WoS核心集被引频次: 6

SCOPUS被引频次: 7

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:505/4957683
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司