收录:
摘要:
A systematic modeling study is conducted to predict the dynamic response of magnetorheological (MR) damper based on a refined constitutive model for MR fluids. A particle-level simulation method is first employed to probe the microstructured behavior and rheological properties of MR fluids, based on which the refined constitutive model is developed. The constitutive model is further validated by comparing the predicted results with the data obtained from microscopic simulations and existing experiments. It is revealed that the proposed constitutive model has comparable accuracy and good applicability in representing MR fluids. Subsequently, a computational fluid dynamics (CFD) model is established to explore MR damper's behavior by using the proposed constitutive model to describe the fluid rheology. For better capturing the dynamic hysteretic behavior of MR damper, a modified parametric model is developed by combing the Bingham plastic model and the proposed constitutive model. The modified model for MR damper shows its validity and superiority over the existing Bingham plastic models.
关键词:
通讯作者信息:
电子邮件地址:
来源 :
JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES
ISSN: 1045-389X
年份: 2021
期: 10
卷: 33
页码: 1271-1291
2 . 7 0 0
JCR@2022
ESI学科: MATERIALS SCIENCE;
ESI高被引阀值:116
JCR分区:3
归属院系: