• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Xia, Shuang (Xia, Shuang.) | Zhang, Xiangyin (Zhang, Xiangyin.)

收录:

Scopus SCIE

摘要:

This paper considered the constrained unmanned aerial vehicle (UAV) path planning problem as the multi-objective optimization problem, in which both costs and constraints are treated as the objective functions. A novel multi-objective particle swarm optimization algorithm based on the Gaussian distribution and the Q-Learning technique (GMOPSO-QL) is proposed and applied to determine the feasible and optimal path for UAV. In GMOPSO-QL, the Gaussian distribution based updating operator is adopted to generate new particles, and the exploration and exploitation modes are introduced to enhance population diversity and convergence speed, respectively. Moreover, the Q-Learning based mode selection logic is introduced to balance the global search with the local search in the evolution process. Simulation results indicate that our proposed GMOPSO-QL can deal with the constrained UAV path planning problem and is superior to existing optimization algorithms in terms of efficiency and robustness.

关键词:

multi-objective particle swarm optimization unmanned aerial vehicle Q-Learning 3D path planning

作者机构:

  • [ 1 ] [Xia, Shuang]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Zhang, Xiangyin]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Xia, Shuang]Minist Educ, Engn Res Ctr Digital Commun, Beijing 100124, Peoples R China
  • [ 4 ] [Zhang, Xiangyin]Minist Educ, Engn Res Ctr Digital Commun, Beijing 100124, Peoples R China

通讯作者信息:

  • [Zhang, Xiangyin]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China;;[Zhang, Xiangyin]Minist Educ, Engn Res Ctr Digital Commun, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

来源 :

ACTUATORS

年份: 2021

期: 10

卷: 10

2 . 6 0 0

JCR@2022

JCR分区:2

被引次数:

WoS核心集被引频次: 7

SCOPUS被引频次: 9

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:962/3902315
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司