• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Gu, Ke (Gu, Ke.) (学者:顾锞) | Liu, Hongyan (Liu, Hongyan.) | Xia, Zhifang (Xia, Zhifang.) | Qiao, Junfei (Qiao, Junfei.) (学者:乔俊飞) | Lin, Weisi (Lin, Weisi.) | Thalmann, Daniel (Thalmann, Daniel.)

收录:

SCIE

摘要:

This article devises a photograph-based monitoring model to estimate the real-time PM2.5 concentrations, overcoming currently popular electrochemical sensor-based PM2.5 monitoring methods' shortcomings such as low-density spatial distribution and time delay. Combining the proposed monitoring model, the photographs taken by various camera devices (e.g., surveillance camera, automobile data recorder, and mobile phone) can widely monitor PM2.5 concentration in megacities. This is beneficial to offering helpful decision-making information for atmospheric forecast and control, thus reducing the epidemic of COVID-19. To specify, the proposed model fuses Information Abundance measurement and Wide and Deep learning, dubbed as IAWD, for PM2.5 monitoring. First, our model extracts two categories of features in a newly proposed DS transform space to measure the information abundance (IA) of a given photograph since the growth of PM2.5 concentration decreases its IA. Second, to simultaneously possess the advantages of memorization and generalization, a new wide and deep neural network is devised to learn a nonlinear mapping between the above-mentioned extracted features and the groundtruth PM2.5 concentration. Experiments on two recently established datasets totally including more than 100 000 photographs demonstrate the effectiveness of our extracted features and the superiority of our proposed IAWD model as compared to state-of-the-art relevant computing techniques.

关键词:

Atmospheric measurements Atmospheric modeling COVID-19 DS transform space Feature extraction information abundance (IA) Monitoring photograph-based PM2.5 monitoring Temperature measurement Transforms wide and deep learning

作者机构:

  • [ 1 ] [Gu, Ke]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intellige, Engn Res Ctr Intelligence Percept & Autonomou,Bei, Fac Informat Technol,Minist Educ,Beijing Artifici, Beijing 100124, Peoples R China
  • [ 2 ] [Liu, Hongyan]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intellige, Engn Res Ctr Intelligence Percept & Autonomou,Bei, Fac Informat Technol,Minist Educ,Beijing Artifici, Beijing 100124, Peoples R China
  • [ 3 ] [Xia, Zhifang]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intellige, Engn Res Ctr Intelligence Percept & Autonomou,Bei, Fac Informat Technol,Minist Educ,Beijing Artifici, Beijing 100124, Peoples R China
  • [ 4 ] [Qiao, Junfei]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intellige, Engn Res Ctr Intelligence Percept & Autonomou,Bei, Fac Informat Technol,Minist Educ,Beijing Artifici, Beijing 100124, Peoples R China
  • [ 5 ] [Lin, Weisi]Nanyang Technol Univ, Sch Comp Sci & Engn, Singapore 639798, Singapore
  • [ 6 ] [Thalmann, Daniel]Ecole Polytech Fed Lausanne, CH-1015 Lausanne, Switzerland

通讯作者信息:

  • 顾锞

    [Gu, Ke]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intellige, Engn Res Ctr Intelligence Percept & Autonomou,Bei, Fac Informat Technol,Minist Educ,Beijing Artifici, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

来源 :

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

ISSN: 2162-237X

年份: 2021

期: 10

卷: 32

页码: 4278-4290

1 0 . 4 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:11

被引次数:

WoS核心集被引频次: 60

SCOPUS被引频次: 80

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:183/3605191
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司