• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Yu, Yadong (Yu, Yadong.) | Zhang, Yong (Zhang, Yong.) (学者:张勇) | Qian, Sean (Qian, Sean.) | Wang, Shaofan (Wang, Shaofan.) | Hu, Yongli (Hu, Yongli.) (学者:胡永利) | Yin, Baocai (Yin, Baocai.) (学者:尹宝才)

收录:

EI Scopus SCIE

摘要:

Traffic flow data has three main characteristics: large amount of noise and incompleteness, temporal and spatial correlation, and dynamic sequential property. Problems of noise, loss and incompleteness could decrease the prediction performance and make it difficult for transportation system management. Inspired by recent work on low rank representation (LRR) and dynamic mode decomposition (DMD), we propose a Low Rank Dynamic Mode Decomposition (LRDMD) model which solves the aforementioned problems simultaneously. LRDMD predicts traffic flow by using a state transition matrix which characterizes the relationship between temporally neighboring fragments of traffic flow with low rank regularization. We conduct experiments of traffic flow prediction of different time intervals using loop coil detector data of Qingdao, and the results show that LRDMD outperforms state-of-the-art methods.

关键词:

Intelligent transportation system Time series analysis Machine learning Neural networks Roads Detectors Data models Predictive models Koopman modes traffic flow prediction dynamic mode decomposition low rank representation

作者机构:

  • [ 1 ] [Yu, Yadong]Beijing Univ Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing Artificial Intelligence Inst, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Zhang, Yong]Beijing Univ Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing Artificial Intelligence Inst, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Wang, Shaofan]Beijing Univ Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing Artificial Intelligence Inst, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Hu, Yongli]Beijing Univ Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing Artificial Intelligence Inst, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 5 ] [Yin, Baocai]Beijing Univ Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing Artificial Intelligence Inst, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 6 ] [Qian, Sean]Carnegie Mellon Univ, Dept Civil & Environm Engn, Pittsburgh, PA 15213 USA
  • [ 7 ] [Qian, Sean]Carnegie Mellon Univ, H John Heinz III Coll, Pittsburgh, PA 15213 USA

通讯作者信息:

  • [Wang, Shaofan]Beijing Univ Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing Artificial Intelligence Inst, Fac Informat Technol, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

来源 :

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

ISSN: 1524-9050

年份: 2021

期: 10

卷: 22

页码: 6547-6560

8 . 5 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:87

JCR分区:1

被引次数:

WoS核心集被引频次: 21

SCOPUS被引频次: 29

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

在线人数/总访问数:361/3900680
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司