• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zeng, Huiping (Zeng, Huiping.) | Xu, Ke (Xu, Ke.) | Wang, Fanshuo (Wang, Fanshuo.) | Sun, Siqi (Sun, Siqi.) | Li, Dong (Li, Dong.) (学者:李冬) | Zhang, Jie (Zhang, Jie.)

收录:

SCIE

摘要:

Although the removal of arsenic from water using chitosan-WTRs adsorbent made by the embedding method has been extensively studied, the adsorption capacity is significantly lower than that of origin WTRs. In this paper, the WTRs-chitosan beads made by homogeneous method (WCB) were used as effective As(III) adsorbents. In order to obtain a better oxidation ability, MnO2 was added to WCB to make Mn-WCB, which was compared with WCB through various experiments to verify the optimization effect. Both adsorbents have carried out a variety of characterization and adsorption efficiency experiments. The physicochemical properties and adsorption capacities of WCB and Mn-WCB were compared, and the adsorption mechanism of Mn-WCB was analyzed. Under neutral conditions, the maximum adsorption capacity estimated according to the Langmuir isotherm model were 28.607 mg/g and 36.911 mg/g, respectively. By comparison, adding manganese dioxide to WCB can effectively increase the adsorption capacity and enhance the regeneration performance, also the pore structure and acid resistance have been improved. The experimental results proved that both WCB and Mn-WCB are good As(III) adsorbents, and Mn-WCB was obviously better than WCB in terms of adsorption capacity and structure, indicating that the addition of MnO2 in WTR-chitosan beads is an effective optimization method for As(III) removal.

关键词:

As(III) removal Chitosan Homogeneous method Iron sludge Optimization

作者机构:

  • [ 1 ] [Zeng, Huiping]Beijing Univ Technol, Key Lab Water Qual Sci & Water Environm Recovery, Beijing 100124, Peoples R China
  • [ 2 ] [Xu, Ke]Beijing Univ Technol, Key Lab Water Qual Sci & Water Environm Recovery, Beijing 100124, Peoples R China
  • [ 3 ] [Wang, Fanshuo]Beijing Univ Technol, Key Lab Water Qual Sci & Water Environm Recovery, Beijing 100124, Peoples R China
  • [ 4 ] [Sun, Siqi]Beijing Univ Technol, Key Lab Water Qual Sci & Water Environm Recovery, Beijing 100124, Peoples R China
  • [ 5 ] [Li, Dong]Beijing Univ Technol, Key Lab Water Qual Sci & Water Environm Recovery, Beijing 100124, Peoples R China
  • [ 6 ] [Zhang, Jie]Beijing Univ Technol, Key Lab Water Qual Sci & Water Environm Recovery, Beijing 100124, Peoples R China
  • [ 7 ] [Zhang, Jie]Harbin Inst Technol, State Key Lab Urban Water Resource & Environm, Harbin 150090, Peoples R China

通讯作者信息:

  • 李冬

    [Li, Dong]Beijing Univ Technol, Key Lab Water Qual Sci & Water Environm Recovery, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

REACTIVE & FUNCTIONAL POLYMERS

ISSN: 1381-5148

年份: 2021

卷: 167

5 . 1 0 0

JCR@2022

ESI学科: CHEMISTRY;

ESI高被引阀值:7

被引次数:

WoS核心集被引频次: 4

SCOPUS被引频次: 5

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:1182/2910421
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司