• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Han, Han (Han, Han.) | Zhuo, Li (Zhuo, Li.) | Li, Jiafeng (Li, Jiafeng.) | Zhang, Jing (Zhang, Jing.) | Wang, Meng (Wang, Meng.)

收录:

EI Scopus SCIE

摘要:

Image Quality Assessment (IQA) is one of the fundamental problems in the fields of image processing, image/ video coding and transmission, and so on. In this paper, a Blind Image Quality Assessment (BIQA) approach with channel attention based deep Residual Network (ResNet)and extended LargeVis dimensionality reduction is proposed. Firstly, ResNet50 with channel attention mechanism is used as the backbone network to extract the deep features from the image. In order to reduce the dimensionality of the deep features, LargeVis, which is originally designed for the visualization of large scale high-dimensional data, is extended by using Support Vector Regression (SVR) to perform on a single feature vector data. The extended LargeVis can remove the redundant information of the deep features so as to obtain a low-dimensional and discriminative feature rep-resentation. Finally, the quality prediction model is established by using SVR as the fitting method. The low-dimensional feature representation and quality score of the image form the pair-wise data samples to train the fitting model. Experimental results on authentic distortions datasets and synthetic distortions datasets show that our proposed method can achieve superior performance compared with the state-of-the-art methods.

关键词:

Channel attention mechanism LargeVis dimensionality reduction Blind image quality assessment ResNet-50

作者机构:

  • [ 1 ] [Han, Han]Beijing Univ Technol, Fac Informat, Beijing 100124, Peoples R China
  • [ 2 ] [Zhuo, Li]Beijing Univ Technol, Fac Informat, Beijing 100124, Peoples R China
  • [ 3 ] [Li, Jiafeng]Beijing Univ Technol, Fac Informat, Beijing 100124, Peoples R China
  • [ 4 ] [Zhang, Jing]Beijing Univ Technol, Fac Informat, Beijing 100124, Peoples R China
  • [ 5 ] [Wang, Meng]Beijing Univ Technol, Fac Informat, Beijing 100124, Peoples R China
  • [ 6 ] [Han, Han]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 7 ] [Zhuo, Li]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 8 ] [Li, Jiafeng]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 9 ] [Zhang, Jing]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 10 ] [Wang, Meng]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 11 ] [Wang, Meng]Hefei Univ Technol, Sch Comp Sci & Informat Engn, Hefei 230009, Peoples R China

通讯作者信息:

  • [Zhuo, Li]Beijing Univ Technol, Fac Informat, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION

ISSN: 1047-3203

年份: 2021

卷: 80

2 . 6 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:87

JCR分区:2

被引次数:

WoS核心集被引频次: 4

SCOPUS被引频次: 4

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 5

归属院系:

在线人数/总访问数:825/3905207
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司