• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Gao, Jingwei (Gao, Jingwei.) | Fan, Lifeng (Fan, Lifeng.) (学者:范立峰) | Wan, Zhang (Wan, Zhang.)

收录:

SCIE

摘要:

This study investigated the thermal cycling effects on the dynamic behavior of granite and described its microstructure. The specimens were subjected to various numbers of thermal cycles (0, 1, 3, 5, and 7 cycles) at temperatures ranging from 25 to 500 degrees C. Then, ultrasonic wave tests and split Hopkinson pressure bar (SHPB) tests (with different impact gas pressures of 0.25, 0.28, and 0.31 MPa) were performed to study the thermal cycling effects on the P-wave velocity, P-wave modulus, dynamic compressive strength, and impact failure pattern of the granite specimens. Finally, scanning electron microscopy (SEM) was performed to analyze the micromechanism of the dynamic property degeneration of the granite specimens. The results show that the dynamic properties of the P-wave velocity, P-wave modulus, and dynamic compressive strength exponentially decrease as the number of thermal cycles increases. The decreases in the dynamic properties mainly occur during the first thermal cycle, and the P-wave modulus and dynamic strength decrease by 67.5% and 8.4-16.3%, respectively. Moreover, a higher dynamic compressive strength, smaller fragments, and more fine powder are generated by impact failure with a larger strain rate. Smaller fragments and more fine powder are observed after impact failure as the number of thermal cycles increases. The tests further reveal that the dynamic properties of thermally damaged granite are closely related to the microcracks induced by thermal cycling.

关键词:

Dynamic behavior Failure pattern Granite High temperature SHPB Thermal cycling

作者机构:

  • [ 1 ] [Gao, Jingwei]Beijing Univ Technol, Coll Architecture & Civil Engn, Beijing 100124, Peoples R China
  • [ 2 ] [Fan, Lifeng]Beijing Univ Technol, Coll Architecture & Civil Engn, Beijing 100124, Peoples R China
  • [ 3 ] [Wan, Zhang]Zhejiang Univ, Dept Civil Engn, Hangzhou 310058, Peoples R China

通讯作者信息:

  • 范立峰

    [Fan, Lifeng]Beijing Univ Technol, Coll Architecture & Civil Engn, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

BULLETIN OF ENGINEERING GEOLOGY AND THE ENVIRONMENT

ISSN: 1435-9529

年份: 2021

期: 11

卷: 80

页码: 8711-8723

4 . 2 0 0

JCR@2022

ESI学科: GEOSCIENCES;

ESI高被引阀值:6

被引次数:

WoS核心集被引频次: 10

SCOPUS被引频次: 12

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:3860/2928066
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司