• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wu, Lihua (Wu, Lihua.) | Zhao, Mi (Zhao, Mi.) (学者:赵密) | Jeng, Dong-Sheng (Jeng, Dong-Sheng.) | Wang, Piguang (Wang, Piguang.) (学者:王丕光) | Du, Xiuli (Du, Xiuli.) (学者:杜修力)

收录:

EI SCIE

摘要:

An absorbing boundary condition (ABC) is particularly important for finite element simulation of wave propagation in a multilayered medium. In this paper, a spatially and temporally local high-order absorbing boundary condition is proposed for scalar wave propagation in semi-infinite multilayered media. A semi-discrete motion equation is derived by discretizing the truncation boundary of the semi-infinite domain along the vertical direction. The scalar dynamic stiffness in the frequency domain for a single degree of freedom (DOF) on the truncation boundary is obtained by only considering the first mode of the semi-infinite domain. The scalar dynamic stiffness is expressed as a continued fraction expansion that is stable and converges exponentially to the exact solution. The ABC based on the continued fraction for a single DOF on the truncation boundary is established by introducing auxiliary variables. The proposed ABC is always stable and it can be coupled straightforwardly with the existing finite element method. Since it is spatially decoupled and the coefficients in it are easy to obtain, the proposed ABC is convenient to apply in engineering. Numerical examples demonstrate the superior properties of the proposed method with high accuracy, high efficiency, and good stability. © 2020 Elsevier Ltd

关键词:

Boundary conditions Degrees of freedom (mechanics) Equations of motion Finite element method Frequency domain analysis Numerical methods Stiffness Time domain analysis Wave propagation

作者机构:

  • [ 1 ] [Wu, Lihua]Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing; 100124, China
  • [ 2 ] [Zhao, Mi]Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing; 100124, China
  • [ 3 ] [Jeng, Dong-Sheng]School of Engineering and Built Environment, Griffith University Gold Coast Campus, Queensland; QLD; 4222, Australia
  • [ 4 ] [Wang, Piguang]Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing; 100124, China
  • [ 5 ] [Du, Xiuli]Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing; 100124, China

通讯作者信息:

  • 赵密

    [zhao, mi]key laboratory of urban security and disaster engineering of ministry of education, beijing university of technology, beijing; 100124, china

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

Computers and Geotechnics

ISSN: 0266-352X

年份: 2020

卷: 128

5 . 3 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:34

JCR分区:1

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 5

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:841/2900290
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司