• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhang, Fangzhai (Zhang, Fangzhai.) | Peng, Yongzhen (Peng, Yongzhen.) (学者:彭永臻) | Liu, Zihui (Liu, Zihui.) | Liu, Yongwang (Liu, Yongwang.) | Zhao, Li (Zhao, Li.)

收录:

EI Scopus SCIE

摘要:

Introducing fermentation technology into sewage treatment is a sustainable development concept, but future application still faces many challenges. A novel partial nitrification, fermentation-based double denitrification biopmcess (PN-F-Double/DN) was achieved in three separated SBR type reactors, simultaneously treating high ammonia (1766.6 mg/L) mature landfill leachate and external waste activated sludge (WAS, MLSS = 20.6 g/L). Firstly, NH4+-N was oxidized to NO2--N in partial nitrification reactor (PN-SBR), with nitrite accumulation ratio (NAR) of 96.5%. Next, the PN-SBR effluent (NO2--N = 1529.8 mg/L) coupled with the WAS were introduced to an anoxic reactor for integrated fermentation-denitrification (IFD-SBR). The occurrence of fermentation was mainly attributed to free nitrous acid (FNA, nitrite protonate form) promoting the splitting decomposition of sludge spatial configuration and interfacial forces. The released volatile fatty acids (VFAs) were utilized in situ during the denitrification process (NO2--N -> N-2), obtaining 0.6 kg/m(3).d nitrogen removal rate and 3.3 kg/m(3).d sludge reduction rate. Finally, undesirable fermentation by-products from IFD-SBR (NH4+-N = 119.2 mg/L) were further removed in the endogenous post-denitrification reactor (EPD-SBR) through operational strategy of anaerobic/aerobic/anoxic by residual VFAs as the carbon source. In the EPD-SBR, Defluviicoccus (0.9%) and Candidatus Competibacter (5.8%) dominated carbon source storage and nitrogen removal, acting as a typical denitrifying glycogen-accumulating organism (DGAO), with an intracellular carbon storage efficiency of 83.1% and nitrogen removal contribution of 93.7%. After 200 days of operation, the PN-F-Double/DN process provided effluent containing, on average, 1.86 mg/L NH4+-N and 5.5 mg/L NOx--N, with 98.5% TN removal. Compared with traditional bioprocesses, PN-F-Double/DN allowed up to 25% saving in aeration energy consumption, 100% decrease in carbon source demand, and achieve 46.1% external WAS reduction.

关键词:

Fermentation Intracellular carbon storage Mature landfill leachate Endogenous denitrification WAS

作者机构:

  • [ 1 ] [Zhang, Fangzhai]China Architecture Design & Res Grp, Beijing 100044, Peoples R China
  • [ 2 ] [Liu, Yongwang]China Architecture Design & Res Grp, Beijing 100044, Peoples R China
  • [ 3 ] [Zhao, Li]China Architecture Design & Res Grp, Beijing 100044, Peoples R China
  • [ 4 ] [Zhang, Fangzhai]Beijing Univ Technol, Engn Res Ctr Beijing, Natl Engn Lab Adv Municipal Wastewater Treatment, Beijing 100124, Peoples R China
  • [ 5 ] [Peng, Yongzhen]Beijing Univ Technol, Engn Res Ctr Beijing, Natl Engn Lab Adv Municipal Wastewater Treatment, Beijing 100124, Peoples R China
  • [ 6 ] [Liu, Zihui]Beijing Univ Civil Engn & Architecture, Lib, Beijing 100044, Peoples R China

通讯作者信息:

  • [Zhao, Li]China Architecture Design & Res Grp, Beijing 100044, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

WATER RESEARCH

ISSN: 0043-1354

年份: 2021

卷: 203

1 2 . 8 0 0

JCR@2022

ESI学科: ENVIRONMENT/ECOLOGY;

ESI高被引阀值:94

JCR分区:1

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 25

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:685/3898208
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司