收录:
摘要:
Flexible optoelectronic synaptic devices that functionally imitate the neural behavior with tunable optoelectronic characteristics are crucial to the development of advanced bioinspired neural networks. In this work, amorphous oxide-decorated GaN nanowire arrays (GaOx@GaN NWAs) are prepared on flexible graphite paper. A GaOx@GaN NWA-based flexible device has tunable persistent photoconductivity (PPC) and shows a conversible fast/slow decay process (SDP). Photoconductivity can be modulated by single or double light pulses with different illumination powers and biases. PPC gives rise to the high-performance SDP such as a long decay time of 2.3 x 10(5) s. The modulation mechanism is proposed and discussed. Our results reveal an innovative and efficient strategy to produce decorated NWAs on a flexible substrate with tunable optoelectronic properties and exhibit potential for flexible neuromorphic system applications.
关键词:
通讯作者信息:
电子邮件地址: