• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Mahmood, Tariq (Mahmood, Tariq.) | Li, Jianqiang (Li, Jianqiang.) (学者:李建强) | Pei, Yan (Pei, Yan.) | Akhtar, Faheem (Akhtar, Faheem.)

收录:

Scopus SCIE

摘要:

Simple Summary Diagnosing breast cancer masses and calcification clusters is crucial in mammography, which reduces disease consequences and initiates treatment at an early stage. A misinterpretation of mammography may lead to an unneeded biopsy of the false-positive results, decreasing the patient's chances of survival. This study aims to increase the probability of early breast mass identification to ensure better treatment and minimize mortality risk. However, this study proposes a deep learning method based on convolutional neural networks to extract features of varying densities and classify normal and suspicious mammography regions. Two different experiments were carried out to validate the consistency of diagnoses and classification. The first experiment consisted of five end-to-end pre-trained and fine-tuned deep convolution neural networks. Additionally, the deep features extracted are used to train the support vector machine algorithm, resulting in an outstanding performance in the second experiment. Furthermore, this study confirms an improvement in mass recognition accuracy through data cleaning, preprocessing, and augmentation. Our deep learning hybrid model obtained a classification accuracy of 97.8%, outperforming the current state-of-the-art approaches. The proposed model's improvements are appropriated in conventional pathological practices that conceivably reduce the pathologist's strain in predicting clinical outcomes by analyzing patients' mammography images. Background: Diagnosing breast cancer masses and calcification clusters have paramount significance in mammography, which aids in mitigating the disease's complexities and curing it at early stages. However, a wrong mammogram interpretation may lead to an unnecessary biopsy of the false-positive findings, which reduces the patient's survival chances. Consequently, approaches that learn to discern breast masses can reduce the number of misconceptions and incorrect diagnoses. Conventionally used classification models focus on feature extraction techniques specific to a particular problem based on domain information. Deep learning strategies are becoming promising alternatives to solve the many challenges of feature-based approaches. Methods: This study introduces a convolutional neural network (ConvNet)-based deep learning method to extract features at varying densities and discern mammography's normal and suspected regions. Two different experiments were carried out to make an accurate diagnosis and classification. The first experiment consisted of five end-to-end pre-trained and fine-tuned deep convolution neural networks (DCNN). The in-depth features extracted from the ConvNet are also used to train the support vector machine algorithm to achieve excellent performance in the second experiment. Additionally, DCNN is the most frequently used image interpretation and classification method, including VGGNet, GoogLeNet, MobileNet, ResNet, and DenseNet. Moreover, this study pertains to data cleaning, preprocessing, and data augmentation, and improving mass recognition accuracy. The efficacy of all models is evaluated by training and testing three mammography datasets and has exhibited remarkable results. Results: Our deep learning ConvNet+SVM model obtained a discriminative training accuracy of 97.7% and validating accuracy of 97.8%, contrary to this, VGGNet16 method yielded 90.2%, 93.5% for VGGNet19, 63.4% for GoogLeNet, 82.9% for MobileNetV2, 75.1% for ResNet50, and 72.9% for DenseNet121. Conclusions: The proposed model's improvement and validation are appropriated in conventional pathological practices that conceivably reduce the pathologist's strain in predicting clinical outcomes by analyzing patients' mammography images.

关键词:

deep transfer learning mammography classification augmentation breast cancer mass computer-aided diagnosis deep learning

作者机构:

  • [ 1 ] [Mahmood, Tariq]Beijing Univ Technol, Sch Software Engn, Beijing 100024, Peoples R China
  • [ 2 ] [Li, Jianqiang]Beijing Univ Technol, Sch Software Engn, Beijing 100024, Peoples R China
  • [ 3 ] [Mahmood, Tariq]Univ Educ, Div Sci & Technol, Lahore 54000, Pakistan
  • [ 4 ] [Li, Jianqiang]Beijing Engn Res Ctr IoT Software & Syst, Beijing 100124, Peoples R China
  • [ 5 ] [Pei, Yan]Univ Aizu, Comp Sci Div, Aizu Wakamatsu, Fukushima 9658580, Japan
  • [ 6 ] [Akhtar, Faheem]Sukkur IBA Univ, Dept Comp Sci, Sukkur 65200, Pakistan

通讯作者信息:

  • [Pei, Yan]Univ Aizu, Comp Sci Div, Aizu Wakamatsu, Fukushima 9658580, Japan

查看成果更多字段

相关关键词:

相关文章:

来源 :

BIOLOGY-BASEL

年份: 2021

期: 9

卷: 10

4 . 2 0 0

JCR@2022

JCR分区:1

被引次数:

WoS核心集被引频次: 37

SCOPUS被引频次: 47

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:271/4974763
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司