• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Yu Nai-gong (Yu Nai-gong.) (学者:于乃功) | Xu Qiao (Xu Qiao.) | Wang Hong-lu (Wang Hong-lu.) | Lin Jia (Lin Jia.)

收录:

EI Scopus SCIE CSCD

摘要:

Wafer bin map (WBM) inspection is a critical approach for evaluating the semiconductor manufacturing process. An excellent inspection algorithm can improve the production efficiency and yield. This paper proposes a WBM defect pattern inspection strategy based on the DenseNet deep learning model, the structure and training loss function are improved according to the characteristics of the WBM. In addition, a constrained mean filtering algorithm is proposed to filter the noise grains. In model prediction, an entropy-based Monte Carlo dropout algorithm is employed to quantify the uncertainty of the model decision. The experimental results show that the recognition ability of the improved DenseNet is better than that of traditional algorithms in terms of typical WBM defect patterns. Analyzing the model uncertainty can not only effectively reduce the miss or false detection rate but also help to identify new patterns.

关键词:

DenseNet convolutional neural network model uncertainty wafer defect inspection

作者机构:

  • [ 1 ] [Yu Nai-gong]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Xu Qiao]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Wang Hong-lu]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Lin Jia]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 5 ] [Yu Nai-gong]Beijing Key Lab Comp Intelligence & Intelligent S, Beijing 100124, Peoples R China
  • [ 6 ] [Xu Qiao]Beijing Key Lab Comp Intelligence & Intelligent S, Beijing 100124, Peoples R China
  • [ 7 ] [Wang Hong-lu]Beijing Key Lab Comp Intelligence & Intelligent S, Beijing 100124, Peoples R China
  • [ 8 ] [Lin Jia]Beijing Key Lab Comp Intelligence & Intelligent S, Beijing 100124, Peoples R China
  • [ 9 ] [Yu Nai-gong]Minist Educ, Engn Res Ctr Digital Community, Beijing 100124, Peoples R China
  • [ 10 ] [Xu Qiao]Minist Educ, Engn Res Ctr Digital Community, Beijing 100124, Peoples R China
  • [ 11 ] [Wang Hong-lu]Minist Educ, Engn Res Ctr Digital Community, Beijing 100124, Peoples R China
  • [ 12 ] [Lin Jia]Minist Educ, Engn Res Ctr Digital Community, Beijing 100124, Peoples R China

通讯作者信息:

  • 于乃功

    [Yu Nai-gong]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China;;[Yu Nai-gong]Beijing Key Lab Comp Intelligence & Intelligent S, Beijing 100124, Peoples R China;;[Yu Nai-gong]Minist Educ, Engn Res Ctr Digital Community, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

JOURNAL OF CENTRAL SOUTH UNIVERSITY

ISSN: 2095-2899

年份: 2021

期: 8

卷: 28

页码: 2436-2450

4 . 4 0 0

JCR@2022

ESI学科: MATERIALS SCIENCE;

ESI高被引阀值:116

JCR分区:2

被引次数:

WoS核心集被引频次: 6

SCOPUS被引频次: 7

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

归属院系:

在线人数/总访问数:569/3901883
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司