收录:
摘要:
The application of deep learning methods in brain disease diagnosis is becoming a new research hotspot. This study constructed brain functional networks based on the functional magnetic resonance imaging (fMRI) data, and proposed a novel convolutional neural network combined with a prototype learning (CNNPL) framework to classify brain functional networks for the diagnosis of autism spectrum disorder (ASD). At the bottom of CNNPL, traditional CNN was employed as the basic feature extractor, while at the top of CNNPL multiple prototypes were automatically learnt on the features to represent different categories. A generalized prototype loss based on distance cross-entropy was proposed to jointly learn the parameters of the CNN feature extractor and the prototypes. The classification was implemented with prototype matching. A transfer learning strategy was introduced to our CNNPL for weight initialization in the subsequent fine-tuning phase to promote model training. We conducted systematic experiments on the aggregate multi-sites ASD dataset. Experimental results revealed that our model outperforms the current state-of-the-art methods in ASD classification and can reliably learn inter-site biomarkers, indicating the robustness of our model on large-scale dataset with inter-site variability. Furthermore, our model demonstrated robust learning capability for high-level organization of brain functionality. Our study also identified important brain regions as biomarkers associated with ASD classification. Together, our proposed model provides a promising solution for learning and classifying brain functional networks, and thus contributes to the biomarker extraction and imaging diagnosis of ASD.
关键词:
通讯作者信息:
来源 :
IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING
ISSN: 1534-4320
年份: 2021
卷: 29
页码: 2193-2202
4 . 9 0 0
JCR@2022
ESI学科: ENGINEERING;
ESI高被引阀值:87
JCR分区:1
归属院系: