• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

En, Qing (En, Qing.) | Duan, Lijuan (Duan, Lijuan.) (学者:段立娟) | Zhang, Zhaoxiang (Zhang, Zhaoxiang.)

收录:

EI Scopus SCIE

摘要:

Weakly supervised video object segmentation (WSVOS) is a vital yet challenging task in which the aim is to segment pixel-level masks with only category labels. Existing methods still have certain limitations, e.g., difficulty in comprehending appropriate spatiotemporal knowledge and an inability to explore common semantic information with category labels. To overcome these challenges, we formulate a novel framework by integrating multisource saliency and incorporating an exemplar mechanism for WSVOS. Specifically, we propose a multisource saliency module to comprehend spatiotemporal knowledge by integrating spatial and temporal saliency as bottom-up cues, which can effectively eliminate disruptions due to confusing regions and identify attractive regions. Moreover, to our knowledge, we make the first attempt to incorporate an exemplar mechanism into WSVOS by proposing an adaptive exemplar module to process top-down cues, which can provide reliable guidance for co-occurring objects in intraclass videos and identify attentive regions. Our framework, which comprises the two aforementioned modules, offers a new perspective on directly constructing the correspondence between bottom-up cues and top-down cues when ground-truth information for the reference frames is lacking. Comprehensive experiments demonstrate that the proposed framework achieves state-of-the-art performance.

关键词:

Task analysis video object segmentation Motion segmentation Object segmentation Annotations spatiotemporal saliency Feature extraction exemplar mechanism Spatiotemporal phenomena Weakly supervised learning Training

作者机构:

  • [ 1 ] [En, Qing]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Trusted Comp, Beijing 100124, Peoples R China
  • [ 2 ] [Duan, Lijuan]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Trusted Comp, Beijing 100124, Peoples R China
  • [ 3 ] [En, Qing]Natl Engn Lab Crit Technol Informat Secur Classif, Beijing 100124, Peoples R China
  • [ 4 ] [Duan, Lijuan]Natl Engn Lab Crit Technol Informat Secur Classif, Beijing 100124, Peoples R China
  • [ 5 ] [Zhang, Zhaoxiang]Chinese Acad Sci, Ctr Res Intelligent Percept & Comp, Inst Automat, Natl Lab Pattern Recognit, Beijing 100190, Peoples R China
  • [ 6 ] [Zhang, Zhaoxiang]Chinese Acad Sci, Sch Artificial Intelligence, Beijing 100049, Peoples R China
  • [ 7 ] [Zhang, Zhaoxiang]Chinese Acad Sci, Ctr Artificial Intelligence & Robot, Hong Kong Inst Sci & Innovat, Hong Kong, Peoples R China

通讯作者信息:

  • [Zhang, Zhaoxiang]Chinese Acad Sci, Ctr Res Intelligent Percept & Comp, Inst Automat, Natl Lab Pattern Recognit, Beijing 100190, Peoples R China

查看成果更多字段

相关关键词:

来源 :

IEEE TRANSACTIONS ON IMAGE PROCESSING

ISSN: 1057-7149

年份: 2021

卷: 30

页码: 8155-8169

1 0 . 6 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:87

JCR分区:1

被引次数:

WoS核心集被引频次: 6

SCOPUS被引频次: 5

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:252/4807172
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司