• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Liu, Caixia (Liu, Caixia.) | Kong, Dehui (Kong, Dehui.) (学者:孔德慧) | Wang, Shaofan (Wang, Shaofan.) | Li, Jinghua (Li, Jinghua.) | Yin, Baocai (Yin, Baocai.) (学者:尹宝才)

收录:

CPCI-S EI Scopus

摘要:

Recovering the geometry of an object from a single depth image is an interesting yet challenging problem. While the recently proposed learning based approaches have demonstrated promising performance, they tend to produce unfaithful and incomplete 3D shape. In this paper, we propose Latent Feature-Aware and Local Structure-Preserving Network (LALP-Net) for completing the full 3D shape from a single depth view of an object, which consists of a generator and a discriminator. In the generator, we introduce Latent Feature-Aware (LFA) to learn a latent representation from the encoded input for a decoder generating the accurate and complete 3D shape. LFA can be taken as a plug-and-play component to upgrade existing networks. In the discriminator, we combine a Local Structure Preservation (LSP) module regarding visible regions and a Global Structure Prediction (GSP) module regarding entire regions for faithful reconstruction. Experimental results on both synthetic and real-world datasets show that our LALP-Net outperforms the state-of-the-art methods by a large margin.

关键词:

Latent shape representation Depth view Local structure 3D completion

作者机构:

  • [ 1 ] [Liu, Caixia]Beijing Univ Technol, Fac Informat Technol, Beijing Inst Artificial Intelligence, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China
  • [ 2 ] [Kong, Dehui]Beijing Univ Technol, Fac Informat Technol, Beijing Inst Artificial Intelligence, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China
  • [ 3 ] [Wang, Shaofan]Beijing Univ Technol, Fac Informat Technol, Beijing Inst Artificial Intelligence, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China
  • [ 4 ] [Li, Jinghua]Beijing Univ Technol, Fac Informat Technol, Beijing Inst Artificial Intelligence, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China
  • [ 5 ] [Yin, Baocai]Beijing Univ Technol, Fac Informat Technol, Beijing Inst Artificial Intelligence, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China

通讯作者信息:

  • [Wang, Shaofan]Beijing Univ Technol, Fac Informat Technol, Beijing Inst Artificial Intelligence, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

来源 :

ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2021, PT II

ISSN: 0302-9743

年份: 2021

卷: 12892

页码: 67-79

语种: 英文

被引次数:

WoS核心集被引频次: 2

SCOPUS被引频次: 1

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:211/4597841
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司