• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Xu, Xi (Xu, Xi.) | Li, Jianqiang (Li, Jianqiang.) (学者:李建强) | Guan, Yu (Guan, Yu.) | Zhao, Linna (Zhao, Linna.) | Zhang, Li (Zhang, Li.) | Li, Li (Li, Li.)

收录:

CPCI-S EI Scopus

摘要:

Cataract is a chronic eye disease that causes irreversible vision loss. Automatic cataract detection can help people prevent visual impairment and decrease the possibility of blindness. To date, many studies utilize deep learning methods to grade cataract severity on fundus images. However, they mainly focus on the classification performance and ignore the model interpretability, which may lead to a semantic gap between networks and users. In this paper, we present a deep learning network to improve the model interpretability, which consists three main modules: deep feature extraction, visual saliency module and semantic description module. Visual and semantic interpretation jointly employed to provide cataract-grade oriented interpretation for the overall model. Experimental results on real clinical data set show that our method improves the interpretability for cataract grading while ensuring the high classification performance.

关键词:

deep learning model interpretability Cataract grading

作者机构:

  • [ 1 ] [Xu, Xi]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 2 ] [Li, Jianqiang]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 3 ] [Guan, Yu]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 4 ] [Zhao, Linna]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 5 ] [Zhang, Li]Capital Med Univ, Beijing Tongren Hosp, Beijing Tongren Eye Ctr, Beijing, Peoples R China
  • [ 6 ] [Li, Li]Capital Med Univ, Beijing Childrens Hosp, Natl Ctr Childrens Hlth, Beijing, Peoples R China

通讯作者信息:

  • 李建强

    [Li, Jianqiang]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

2021 IEEE 45TH ANNUAL COMPUTERS, SOFTWARE, AND APPLICATIONS CONFERENCE (COMPSAC 2021)

ISSN: 0730-3157

年份: 2021

页码: 1260-1264

语种: 英文

被引次数:

WoS核心集被引频次: 1

SCOPUS被引频次: 2

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

归属院系:

在线人数/总访问数:191/3918075
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司