• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Xiao, Yinlong (Xiao, Yinlong.) | Zhao, Qing (Zhao, Qing.) | Li, Jianqiang (Li, Jianqiang.) (学者:李建强) | Chen, Jieqing (Chen, Jieqing.) | Cheng, Zhenning (Cheng, Zhenning.)

收录:

CPCI-S EI Scopus

摘要:

The integration of lexicon information into character-based models is a hot topic in Chinese Named Entity Recognition(NER) research. Most methods only utilize information from a single lexicon which is usually a general lexicon. However, In the Chinese medical text scenario, due to the large amount of medical terminology, a single lexicon, especially a general lexicon, offers little performance improvement to the Chinese NER. In this paper, we propose a Multi-source Lexicon Information Fusion method for Named Entity Recognition in Chinese Medical Text(MLNER) which can utilize information from both general and medical lexicons. Considering the small medical annotated corpus, we combine the model with the pre-trained model to improve the performance of the model on small datasets by exploiting the rich representation capability of the pre-trained model. Experiments show that our method can effectively improve the performance of NER in Chinese medical text. Our model is also applicable to Chinese NER tasks in other domain specific fields, with good scalability and application value.

关键词:

Pre-trained Model Information Extraction Deep Learning Medical Text Lexicon-based NER

作者机构:

  • [ 1 ] [Xiao, Yinlong]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 2 ] [Zhao, Qing]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 3 ] [Li, Jianqiang]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 4 ] [Chen, Jieqing]Chinese Acad Med Sci & Peking Union Med Coll, Dept Informat Management, Peking Union Med Coll Hosp, Beijing, Peoples R China
  • [ 5 ] [Cheng, Zhenning]Analyze Focus Informat Consultant Ltd, Beijing, Peoples R China

通讯作者信息:

  • [Xiao, Yinlong]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

2021 IEEE 45TH ANNUAL COMPUTERS, SOFTWARE, AND APPLICATIONS CONFERENCE (COMPSAC 2021)

ISSN: 0730-3157

年份: 2021

页码: 1079-1084

语种: 英文

被引次数:

WoS核心集被引频次: 2

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:1872/4266647
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司