• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhu, Zhichao (Zhu, Zhichao.) | Li, Jianqiang (Li, Jianqiang.) (学者:李建强) | Zhao, Qing (Zhao, Qing.) | Wei, Yu-Chih (Wei, Yu-Chih.) | Jia, Yanhe (Jia, Yanhe.)

收录:

CPCI-S EI Scopus

摘要:

The wide adoption of electronic medical record (EMR) systems causes rapid growth of medical and clinical data. It makes the medical named entity recognition (NER) technologies become critical to find useful patient information in the medical dataset. However, the medical terminologies usually have the characteristics of inherent complexity and ambiguity, it is difficult to capture context-dependency representations by supervision signal from a simple single layer structure model. In order to address this problem, this paper proposes a hybrid model based on stacked Bidirectional Long Short-Term Memory (BILSTM) for medical named entity recognition, which we call BSBC (BERT combined with stacked BILSTM and CRF). First, we use Bidirectional Encoder Representation from Transformers (BERT) to perform unsupervised learning on an unlabeled dataset to obtain character-level embeddings. Then, stacked BILSTM is utilized to obtain context-dependency representations through the multi hidden layers structure. Finally, Conditional Random Field (CRF) is used to predict sequence tags. The experiment results show that our method significantly outperforms the baseline methods, it serves as a strong alternative approach compared with traditional methods.

关键词:

Named entity recognition (NER) Bidirectional Encoder Representation from Transformers (BERT) Stacked Bidirectional Long Short-Term Memory (BILSTM) Electronic medical record (EMR)

作者机构:

  • [ 1 ] [Zhu, Zhichao]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 2 ] [Li, Jianqiang]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 3 ] [Zhao, Qing]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 4 ] [Wei, Yu-Chih]Natl Taipei Univ Technol, Taipei, Taiwan
  • [ 5 ] [Jia, Yanhe]Beijng Informat Sci & Technol Univ, Sch Econ & Management, Beijing, Peoples R China

通讯作者信息:

  • 李建强

    [Li, Jianqiang]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

2021 IEEE 45TH ANNUAL COMPUTERS, SOFTWARE, AND APPLICATIONS CONFERENCE (COMPSAC 2021)

ISSN: 0730-3157

年份: 2021

页码: 1930-1935

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 5

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

归属院系:

在线人数/总访问数:207/3771920
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司