• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wang, Jingnan (Wang, Jingnan.) | Li, Jianqiang (Li, Jianqiang.) (学者:李建强) | Zhu, Zhichao (Zhu, Zhichao.) | Zhao, Qing (Zhao, Qing.) | Yu, Yang (Yu, Yang.) | Yang, Liyin (Yang, Liyin.) | Xu, Chun (Xu, Chun.)

收录:

CPCI-S

摘要:

The widely deployed of hospital information systems causes an explosive growth of the electronic medical records (EMRs). It makes the medical structured processing technologies become critical to find researchable data in the large medical dataset. However, the high quality structured processing is a challenging task, in particular due to the inherent complexity and polysemy of medical terminology. In this paper, we propose a novel approach to achieve the joint extraction of events in Chinese electronic medical records, which solves the problem of cascading error transmission in traditional models and the ambiguity of Chinese characters. We first use the Bi-directional Encoder Representation from Transformers(BERT) model to mine features from the preprocessed medical data; then based on the characteristics of Chinese, we use the Bi-directional Long Short-Term Memory(BILSTM) model to capture the semantic information of the context. The experiments were conducted on a real dataset. The F1 score of our model in the identification and classification tasks of event triggers and arguments is the highest, reaching 71.6, 68.1, 55.4 and 46.9, respectively, which proves the effectiveness of the proposed method.

关键词:

BERT BILSTM Chinese Electronic Medical Records Event Extraction

作者机构:

  • [ 1 ] [Wang, Jingnan]Beijing Univ Technol, Fac Informat, Beijing, Peoples R China
  • [ 2 ] [Li, Jianqiang]Beijing Univ Technol, Fac Informat, Beijing, Peoples R China
  • [ 3 ] [Zhu, Zhichao]Beijing Univ Technol, Fac Informat, Beijing, Peoples R China
  • [ 4 ] [Zhao, Qing]Beijing Univ Technol, Fac Informat, Beijing, Peoples R China
  • [ 5 ] [Yu, Yang]Beijing Univ Technol, Fac Informat, Beijing, Peoples R China
  • [ 6 ] [Yang, Liyin]Beijing Univ Technol, Fac Informat, Beijing, Peoples R China
  • [ 7 ] [Xu, Chun]Xinjiang Univ Finance & Econ, Urumqi, Xinjiang, Peoples R China

通讯作者信息:

  • [Xu, Chun]Xinjiang Univ Finance & Econ, Urumqi, Xinjiang, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

2021 IEEE 45TH ANNUAL COMPUTERS, SOFTWARE, AND APPLICATIONS CONFERENCE (COMPSAC 2021)

ISSN: 0730-3157

年份: 2021

页码: 1924-1929

语种: 英文

被引次数:

WoS核心集被引频次: 2

SCOPUS被引频次: 4

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:443/3699816
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司