• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

He, Xuehai (He, Xuehai.) | Cai, Zhuo (Cai, Zhuo.) | Wei, Wenlan (Wei, Wenlan.) | Zhang, Yichen (Zhang, Yichen.) | Mou, Luntian (Mou, Luntian.) | Xing, Eric (Xing, Eric.) | Xie, Pengtao (Xie, Pengtao.)

收录:

CPCI-S CPCI-SSH

摘要:

Pathology imaging is broadly used for identifying the causes and effects of diseases or injuries. Given a pathology image, being able to answer questions about the clinical findings contained in the image is very important for medical decision making. In this paper, we aim to develop a pathological visual question answering framework to analyze pathology images and answer medical questions related to these images. To build such a framework, we create PathVQA, a pathology VQA dataset with 32,795 questions asked from 4,998 pathology images. We also propose a three-level optimization framework which performs self-supervised pretraining and VQA finetuning end-to-end to learn powerful visual and textual representations jointly and automatically identifies and excludes noisy self-supervised examples from pretraining. We perform experiments on our created PathVQA dataset and the results demonstrate the effectiveness of our proposed methods. The datasets and code are available at https://github.com/UCSD-AI4H/PathVQA

关键词:

作者机构:

  • [ 1 ] [He, Xuehai]Univ Calif San Diego, La Jolla, CA 92093 USA
  • [ 2 ] [Zhang, Yichen]Univ Calif San Diego, La Jolla, CA 92093 USA
  • [ 3 ] [Xie, Pengtao]Univ Calif San Diego, La Jolla, CA 92093 USA
  • [ 4 ] [Cai, Zhuo]Tsinghua Univ, Beijing, Peoples R China
  • [ 5 ] [Wei, Wenlan]Wuhan Univ, Wuhan, Hubei, Peoples R China
  • [ 6 ] [Mou, Luntian]Beijing Univ Technol, Beijing, Peoples R China
  • [ 7 ] [Xing, Eric]MBZUAI, Abu Dhabi, U Arab Emirates
  • [ 8 ] [Xing, Eric]CMU, Pittsburgh, PA USA

通讯作者信息:

  • [Xie, Pengtao]Univ Calif San Diego, La Jolla, CA 92093 USA

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

ACL-IJCNLP 2021: THE 59TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS AND THE 11TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING, VOL 2

年份: 2021

页码: 708-718

语种: 英文

被引次数:

WoS核心集被引频次: 22

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:270/4972035
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司