• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Chang Peng (Chang Peng.) | Ding Chunhao (Ding Chunhao.) | Zhao Qiankun (Zhao Qiankun.)

收录:

Scopus SCIE

摘要:

A large Proportion of batch processes commonly have traits of non-Gaussian and nonlinear. In this work, Multiway Kernel Entropy Independent Component Analysis (MKEICA) algorithm was developed to formulate more accurate model for process monitoring so as to enhance the monitoring performance. The original process data with three-dimension were first expanded into two-dimensional data matrix by using AT variable expansion method. The Kernel Entropy Component Analysis (KECA) was then employed to preprocess the data in order to reduce data redundancy. Such approach can also retain the information of cluster structure and maximize the essential characteristics of data. After that, a monitoring model of MKEICA was established for production process monitoring. Once a fault is detected, a nonlinear contribution plots method would be utilized to diagnose the fault variables. Consequently, to illustrate the superiority and feasibility, the proposed method was conducted on the penicillin simulation platform and the actual pharmaceutical production process.

关键词:

Batch process Fault monitoring Fault diagnosis Non-Gaussian and nonlinear Multiway kernel entropy independent component analysis

作者机构:

  • [ 1 ] [Chang Peng]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Ding Chunhao]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Zhao Qiankun]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China

通讯作者信息:

  • [Chang Peng]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS

ISSN: 0169-7439

年份: 2020

卷: 199

3 . 9 0 0

JCR@2022

ESI学科: CHEMISTRY;

ESI高被引阀值:139

被引次数:

WoS核心集被引频次: 11

SCOPUS被引频次: 13

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

归属院系:

在线人数/总访问数:491/3900217
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司