• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

陈双叶 (陈双叶.) | 赵荣 (赵荣.) | 符寒光 (符寒光.) (学者:符寒光) | 高建琛 (高建琛.)

收录:

CSCD

摘要:

为了解决复杂工业过程中的概念漂移问题,提高集成学习模型的泛化性能,在保证集成学习模型精度的基础上,提出了一种用于优化多样性的基学习器在线动态选择集成建模方法.该方法以在线极限学习机作为基学习器,按照基学习器在滑动窗口上的分类精度对其进行逆序排序,将基学习器在滑动窗口上的其他性能指标作为特征属性,依次利用近似线性依靠条件挑选出准确且多样的基学习器用于集成输出,提高了集成学习模型在处理概念漂移数据流时的分类精度.最后,使用合成数据集和公开数据集验证了所提算法的合理性与有效性.

关键词:

准确性 近似线性依靠 在线极限学习机 概念漂移 集成学习 多样性

作者机构:

  • [ 1 ] 北京工业大学信息学部
  • [ 2 ] 北京工业大学材料科学与工程学院

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

北京工业大学学报

年份: 2021

期: 11

卷: 47

页码: 1211-1218

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 4

在线人数/总访问数:427/3864653
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司