• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Peng, Baoying (Peng, Baoying.) | Tong, Liang (Tong, Liang.) | Yan, Dong (Yan, Dong.) | Huo, Weiwei (Huo, Weiwei.)

收录:

EI Scopus SCIE

摘要:

For the purpose of better matching the performance of the organic Rankine cycle (ORC) system concerning the vehicle engine waste heat recovery, this paper studies the output performance of free piston expander-linear generator (FPE-LG). A test bench of FPE-LG is established for small scale ORC system, and timing and displacement control strategy is proposed. Furthermore, the impact of the intake pressure and the torque on motion characteristics and output performance of FPE-LG are analyzed. According to evaluating different learning rates, number of hidden artificial neural networks and training functions, a prediction model of FPE-LG based on artificial neural network is established. Genetic algorithm is used to optimize the key operating parameters, to maximize the power output of FPE-LG. In consideration of the mean square error and determination coefficient, the artificial neural network model is verified and tested by experimental data. Finally, combining genetic algorithm with artificial neural network model, the maximum power output of FPE-LG is optimized and its performance is predicted. The results show that the maximum value of electric current, voltage and power output are 2.8 A, 14.75 V and 28.5 W, respectively. Based on artificial neural network, this method can provide useful guidance for performance prediction and coordinated optimization, with advantages of minimum deviation and high precision. (C)& nbsp;2022 The Authors. Published by Elsevier Ltd.& nbsp;& nbsp;

关键词:

Artificial neural network Free piston expander-linear generator Motion characteristic Organic Rankine cycle Output performance

作者机构:

  • [ 1 ] [Peng, Baoying]Beijing Informat Sci & Technol Univ, Sch Elect & Mech Engn, Beijing 100192, Peoples R China
  • [ 2 ] [Tong, Liang]Beijing Informat Sci & Technol Univ, Sch Elect & Mech Engn, Beijing 100192, Peoples R China
  • [ 3 ] [Huo, Weiwei]Beijing Informat Sci & Technol Univ, Sch Elect & Mech Engn, Beijing 100192, Peoples R China
  • [ 4 ] [Yan, Dong]Beijing Univ Technol, Fac Environm & Life, Key Lab Enhanced Heat Transfer & Energy Conservat, Beijing Key Lab Heat Transfer & Energy Convers, Beijing 100124, Peoples R China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

ENERGY REPORTS

ISSN: 2352-4847

年份: 2022

卷: 8

页码: 1966-1978

5 . 2

JCR@2022

5 . 2 0 0

JCR@2022

JCR分区:2

中科院分区:4

被引次数:

WoS核心集被引频次: 8

SCOPUS被引频次: 14

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:265/4509932
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司