收录:
摘要:
DNA interstrand cross-links (ICLs) are essential for the antitumor activity of chloroethylnitrosoureas (CENUs). Commonly, CENUs resistance is mainly considered to be associated with O-6-methylguanine-DNA methyltransferase (MGMT) within tumors. Bypassing the MGMT-mediated resistance, to our knowledge, herein, we first utilized a novel glycolytic inhibitor, 3-bromopyruvate (3-BrPA), to increase the cytotoxic effects of 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) to human glioma cells based on the hypothesis that blocking energy metabolism renders tumor cells more sensitive to chemotherapy. We found 3-BrPA significantly increased the cell killing by BCNU in human glioma SF763 and SF126 cell lines. Significantly decreased levels of extracellular lactate, cellular ATP and glutathione (GSH) were observed after 3-BrPA treatment, and the effects were more remarkable with 3-BrPA in combination with BCNU. Considering that the role of ATP and GSH in drug efflux, DNA damage repair and drug inactivation, we determined the effect of 3-BrPA on the formation of dG-dC ICLs induced by BCNU using stable isotope dilution high-performance liquid chromatography electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS). As expected, the levels of lethal dG-dC ICLs induced by BCNU were obviously enhanced after 3-BrPA pretreatment. Based on these results, 3-BrPA and related glycolytic inhibitors may be promising to enhance the cell killing effect and reverse the clinical chemoresistance of CENUs and related antitumor agents.
关键词:
通讯作者信息:
电子邮件地址: