• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Li, Dingchang (Li, Dingchang.) | Gao, Jingfeng (Gao, Jingfeng.) (学者:高景峰) | Dai, Huihui (Dai, Huihui.) | Wang, Zhiqi (Wang, Zhiqi.) | Zhao, Yifan (Zhao, Yifan.) | Cui, Yingchao (Cui, Yingchao.)

收录:

Scopus SCIE

摘要:

Metagenomic approach was applied to simultaneously reveal the antibiotic resistance genes (ARGs) and antibacterial biocide & metal resistance genes (BMRGs), and the corresponding microbial hosts with high mobility during aerobic granular sludge (AGS) formation process. The results showed that the relative abundance of BMRGs was 88-123 times that of ARGs. AGS process was easier to enrich BMRGs, leading to a greater risk of drug resistance caused by BMRGs than that by ARGs. The enrichments of ARGs and BMRGs in AGS were closely related to several enhanced microbial metabolisms (i.e., cell motility, transposase and ATP-binding cassette transporters) and their corresponding regulatory genes. Several enhanced KEGG Orthologs (KO) functions, such as K01995, K01996, K01997 and K02002, might cause a positive impact on the spread of ARGs and BMRGs, and the main contributors were the largely enriched glycogens accumulating organisms. The first dominant ARGs (adeF) was carried by lots of microbial hosts, which might be enriched and propagated mainly through horizontal gene transfer. Candidatus Competibacter denitrificans simultaneously harbored ARG (cmx) and Cu related RGs (corR). Many enriched bacteria contained simultaneously multiple BMRGs (copR and corR) and mobile genetic elements (integrons and plasmids), granting them high mobility capabilities and contributing to the spread of BMRGs. This study might provide deeper understandings of the proliferation and mobility of ARGs and BMRGs, importantly, highlighted the status of BMRGs, which laid the foundation for the controlling widespread of resistance genes in AGS.

关键词:

Aerobic granular sludge Horizontal gene transfer Co-selection Metagenomic sequencing Antibacterial biocide & metal resistance genes Antibiotic resistance genes

作者机构:

  • [ 1 ] [Li, Dingchang]Beijing Univ Technol, Fac Environm & Life, Natl Engn Lab Adv Municipal Wastewater Treatment &, Beijing 100124, Peoples R China
  • [ 2 ] [Gao, Jingfeng]Beijing Univ Technol, Fac Environm & Life, Natl Engn Lab Adv Municipal Wastewater Treatment &, Beijing 100124, Peoples R China
  • [ 3 ] [Dai, Huihui]Beijing Univ Technol, Fac Environm & Life, Natl Engn Lab Adv Municipal Wastewater Treatment &, Beijing 100124, Peoples R China
  • [ 4 ] [Wang, Zhiqi]Beijing Univ Technol, Fac Environm & Life, Natl Engn Lab Adv Municipal Wastewater Treatment &, Beijing 100124, Peoples R China
  • [ 5 ] [Zhao, Yifan]Beijing Univ Technol, Fac Environm & Life, Natl Engn Lab Adv Municipal Wastewater Treatment &, Beijing 100124, Peoples R China
  • [ 6 ] [Cui, Yingchao]Beijing Univ Technol, Fac Environm & Life, Natl Engn Lab Adv Municipal Wastewater Treatment &, Beijing 100124, Peoples R China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

ENVIRONMENTAL RESEARCH

ISSN: 0013-9351

年份: 2022

卷: 212

8 . 3

JCR@2022

8 . 3 0 0

JCR@2022

ESI学科: ENVIRONMENT/ECOLOGY;

ESI高被引阀值:47

JCR分区:1

中科院分区:2

被引次数:

WoS核心集被引频次: 23

SCOPUS被引频次: 24

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 7

归属院系:

在线人数/总访问数:714/4293111
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司