• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Han HongGui (Han HongGui.) (学者:韩红桂) | Zhang LinLin (Zhang LinLin.) | Hou Ying (Hou Ying.) | Qiao JunFei (Qiao JunFei.)

收录:

EI Scopus SCIE

摘要:

The selection of global best (Gbest) exerts a high influence on the searching performance of multi-objective particle swarm optimization algorithm (MOPSO). The candidates of MOPSO in external archive are always estimated to select Gbest. However, in most estimation methods, the candidates are considered as the Gbest in a fixed way, which is difficult to adapt to varying evolutionary requirements for balance between convergence and diversity of MOPSO. To deal with this problem, an adaptive candidate estimation-assisted MOPSO (ACE-MOPSO) is proposed in this paper. First, the evolutionary state information, including both the global dominance information and global distribution information of non-dominated solutions, is introduced to describe the evolutionary states to extract the evolutionary requirements. Second, an adaptive candidate estimation method, based on two evaluation distances, is developed to select the excellent leader for balancing convergence and diversity during the dynamic evolutionary process. Third, a leader mutation strategy, using the elite local search (ELS), is devised to select Gbest to improve the searching ability of ACE-MOPSO. Fourth, the convergence analysis is given to prove the theoretical validity of ACE-MOPSO. Finally, this proposed algorithm is compared with popular algorithms on twenty-four benchmark functions. The results demonstrate that ACE-MOPSO has advanced performance in both convergence and diversity.

关键词:

multi-objective particle swarm optimization convergence and diversity convergence analysis evolutionary state information adaptive candidate estimation

作者机构:

  • [ 1 ] [Han HongGui]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Zhang LinLin]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Hou Ying]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Qiao JunFei]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 5 ] [Han HongGui]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 6 ] [Zhang LinLin]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 7 ] [Hou Ying]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 8 ] [Qiao JunFei]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 9 ] [Han HongGui]Minist Educ, Engn Res Ctr Digital Community, Beijing 100124, Peoples R China
  • [ 10 ] [Zhang LinLin]Minist Educ, Engn Res Ctr Digital Community, Beijing 100124, Peoples R China
  • [ 11 ] [Hou Ying]Minist Educ, Engn Res Ctr Digital Community, Beijing 100124, Peoples R China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

SCIENCE CHINA-TECHNOLOGICAL SCIENCES

ISSN: 1674-7321

年份: 2022

期: 8

卷: 65

页码: 1685-1699

4 . 6

JCR@2022

4 . 6 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:49

JCR分区:1

中科院分区:2

被引次数:

WoS核心集被引频次: 9

SCOPUS被引频次: 12

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 7

归属院系:

在线人数/总访问数:1855/4266391
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司