收录:
摘要:
Photovoltaic pavement technology was introduced several years ago but has not yet reached commercial maturity, and there are still many technical difficulties to be overcome, such as heat dissipation issues. Using PV cells to generate sufficient energy requires high solar insolation, but high temperatures will also reduce its efficiency.Therefore, this research evaluates the potential of a pavement integrated PV/T system (PIPVT), which incorporates photovoltaic/thermal (PV/T) technology into the roads for power and thermal energy harvesting. While solving the heat dissipation problem of the PV pavement, it can also recover the heat that cannot be used by the PV cells. A unit block of hollow structure 3D printed using plastic material with tempered glass as a protective layer and ABS plastic was used in this paper. A 3D computational finite element model (FEM) developed in ABAQUS was used to analyse the mechanical response of the structure, and a laboratory experiment was conducted to test the influence of the heat dissipation method incorporating water filled pipes on the power generation efficiency of PV cells. The results show that the introduced water circulating pipes had a negligible effect on the mechanical response of PV pavement unit blocks; PIPVT can significantly reduce the solar panel's temperature, and the temperature drop can be as high as 22 degrees C. According to the results, the primary energy-saving efficiency of PIPVT is estimated to be almost twice that of the conventional PV module. Therefore, this study showed the PIPVT had benefits that went far beyond solar energy generation. (c) 2022 Elsevier Ltd. All rights reserved.
关键词:
通讯作者信息:
电子邮件地址:
来源 :
RENEWABLE ENERGY
ISSN: 0960-1481
年份: 2022
卷: 194
页码: 1-12
8 . 7
JCR@2022
8 . 7 0 0
JCR@2022
ESI学科: ENGINEERING;
ESI高被引阀值:49
JCR分区:1
中科院分区:2
归属院系: