收录:
摘要:
Poly(vinyl ethylene carbonate) (PVEC) electrolyte is one of the preferable choices for solid-state lithium metal batteries (SSLMBs). However, the poor anti-oxidation ability still hinders its practical application for high-energy SSLMBs with high-voltage cathodes. Herein, the strategy of molecular structure adjustment is proposed for improving the properties of PVEC, which exhibits the widened electrochemical stability window (4.8 V vs. Li+/Li) and high ionic conductivity (1.1 x 10(-3) S cm(-1) at 25 degrees C). The compatibilities of cathode/electrolyte and anode/electrolyte interfaces are also enhanced respectively by eliminating the weak bonding of polymer mo-lecular structure and forming LixSn alloy during the ring-opening polymerization. The solid-state batteries with LiCoO2 cathode exhibit the high capacity when charged to 4.5 V at 25 degrees C. Therefore, this work not only dem-onstrates the effective method to enhance the interfacial compatibility between electrolyte and electrode, but also affords an emerging design strategy for polymer electrolyte by breaking the unstable weak bonding for the application requirements of SSLMBs.
关键词:
通讯作者信息:
来源 :
NANO ENERGY
ISSN: 2211-2855
年份: 2022
卷: 98
1 7 . 6
JCR@2022
1 7 . 6 0 0
JCR@2022
ESI学科: MATERIALS SCIENCE;
ESI高被引阀值:66
JCR分区:1
中科院分区:1
归属院系: