• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Yang, Yu-Guang (Yang, Yu-Guang.) | Wang, Bao-Pu (Wang, Bao-Pu.) | Yang, Yong-Li (Yang, Yong-Li.) | Zhou, Yi-Hua (Zhou, Yi-Hua.) | Shi, Wei-Min (Shi, Wei-Min.) | Liao, Xin (Liao, Xin.)

收录:

EI Scopus SCIE

摘要:

A novel visually meaningful image encryption algorithm is proposed based on adaptive 2D compressive sensing and chaotic system. The plain image is first compressed and encrypted simultaneously by adaptive 2D compressive sensing to obtain the pre-encrypted compressed image. In this process, 3D cat map is used to generate the measurement matrix and the scrambling sequence. Then, the pre-encrypted compressed image is embedded into the host image by dynamic LSB method based on 2(K) correction so as to get cipher images with higher visual quality. A four-dimensional discrete chaotic system is used for region scrambling in the embedding process in order to further improve the security of the algorithm. In the simulation tests, the plain image with the maximum size 2048 x 2048 can be compressed and embedded into a host image of size 512 x 512. The embedding ratio is better than the existing algorithms. Most importantly, our algorithm is tens or even hundreds of times more efficient than other algorithms.

关键词:

Visually meaningful encrypted image Image encryption Compressive sensing Chaotic system

作者机构:

  • [ 1 ] [Yang, Yu-Guang]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Wang, Bao-Pu]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Yang, Yong-Li]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Zhou, Yi-Hua]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 5 ] [Shi, Wei-Min]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 6 ] [Yang, Yu-Guang]Beijing Key Lab Trusted Comp, Beijing 100124, Peoples R China
  • [ 7 ] [Liao, Xin]Hunan Univ, Coll Comp Sci & Elect Engn, Changsha 410082, Peoples R China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

MULTIMEDIA TOOLS AND APPLICATIONS

ISSN: 1380-7501

年份: 2022

期: 14

卷: 82

页码: 22033-22062

3 . 6

JCR@2022

3 . 6 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:46

JCR分区:2

中科院分区:4

被引次数:

WoS核心集被引频次: 21

SCOPUS被引频次: 21

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:275/4974748
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司