• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Xie, Yingbo (Xie, Yingbo.) | Yang, Shengxiang (Yang, Shengxiang.) | Wang, Ding (Wang, Ding.) (学者:王鼎) | Qiao, Junfei (Qiao, Junfei.) | Yin, Baocai (Yin, Baocai.)

收录:

EI Scopus SCIE

摘要:

The decomposition-based evolutionary algorithm (MOEA/D) has attained excellent performance in solving optimization problems involving multiple conflicting objectives. However, the Pareto-optimal front (POF) of many multiobjective optimization problems (MOPs) has irregular properties, which weakens the performance of MOEA/D. To address this issue, we devise a dynamic transfer reference point-oriented MOEA/D with local objective-space knowledge (DTR-MOEA/D). The design principle is based on three original and rigorous mechanisms. First, the individuals are projected onto a line segment (two-objective case) or a 3-D plane (three-objective case) after being normalized in the objective space. The line segment or the plane is divided into three different regions: 1) the central region; 2) the middle region; and 3) the edge region. Second, a dynamic transfer criterion of the reference point is developed based on the population density relationships in different regions. Third, a strategy of population diversity enhancement guided by local objective-space knowledge is adopted to improve the diversity of the population. Finally, the experimental results conducted on 16 benchmark MOPs and eight modified MOPs with irregular POF shapes verify that the proposed DTR-MOEA/D has attained a strong competitiveness compared with other representative algorithms.

关键词:

Shape Pareto optimization multiobjective optimization Optimization Decomposition Statistics local objective space dynamic transfer reference point Convergence Sociology Optical fibers

作者机构:

  • [ 1 ] [Xie, Yingbo]Beijing Univ Technol, Fac Informat Technol, Beijing Lab Smart Environm Protect, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 2 ] [Wang, Ding]Beijing Univ Technol, Fac Informat Technol, Beijing Lab Smart Environm Protect, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 3 ] [Qiao, Junfei]Beijing Univ Technol, Fac Informat Technol, Beijing Lab Smart Environm Protect, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 4 ] [Xie, Yingbo]Beijing Univ Technol, Beijing Inst Artificial Intelligence, Beijing 100124, Peoples R China
  • [ 5 ] [Wang, Ding]Beijing Univ Technol, Beijing Inst Artificial Intelligence, Beijing 100124, Peoples R China
  • [ 6 ] [Qiao, Junfei]Beijing Univ Technol, Beijing Inst Artificial Intelligence, Beijing 100124, Peoples R China
  • [ 7 ] [Yin, Baocai]Beijing Univ Technol, Beijing Inst Artificial Intelligence, Beijing 100124, Peoples R China
  • [ 8 ] [Yang, Shengxiang]De Montfort Univ, Sch Comp Sci & Informat, Ctr Computat Intelligence, Leicester LE1 9BH, Leics, England
  • [ 9 ] [Yin, Baocai]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China

通讯作者信息:

查看成果更多字段

相关关键词:

来源 :

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

ISSN: 1089-778X

年份: 2022

期: 3

卷: 26

页码: 542-554

1 4 . 3

JCR@2022

1 4 . 3 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:46

JCR分区:1

中科院分区:1

被引次数:

WoS核心集被引频次: 23

SCOPUS被引频次: 30

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 8

归属院系:

在线人数/总访问数:958/4281177
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司