• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhang, Wen (Zhang, Wen.) (学者:张文) | Xie, Rui (Xie, Rui.) | Wang, Qiang (Wang, Qiang.) | Yang, Ye (Yang, Ye.) | Li, Jian (Li, Jian.)

收录:

SSCI EI Scopus SCIE

摘要:

The task of detecting fraudulent reviewers is of great importance to E-commerce platforms. Existing research has invested much effort into developing comprehensive features and advanced techniques to detect fraudulent reviewers. However, most of these studies have ignored the data imbalance problem inherent in fraudulent reviewer detection: non-fraudulent reviewers are the majority, while fraudulent reviewers are the minority in real practice. To fill this gap, we propose a novel approach called ImDetector to detect fraudulent reviewers while handling data imbalance based on weighted latent Dirichlet allocation (LDA) and Kullback-Leibler (KL) divergence. Specifically, we develop a weighted LDA model to extract the latent topics of reviewers distributed on the review features. Asymmetric KL divergence is adopted to make the similarity measure between reviewers biased toward the fraudulent minority when using the K-nearest-neighbor for classification. By mapping the reviewers to the latent topics of features derived from the weighted LDA model and measuring the similarities between reviewers using asymmetric KL divergence, the data imbalance problem in fraudulent reviewer detection is alleviated. Extensive experiments on the Yelp.com dataset demonstrate that the proposed ImDetector approach is superior to the state-of-the-art techniques used for fraudulent reviewer detection. We also explain the experimental results and present the managerial implications of this paper.

关键词:

Kullback-Leibler divergence Imbalanced data Weighted LDA Fraudulent reviewer detection E-commerce

作者机构:

  • [ 1 ] [Zhang, Wen]Beijing Univ Technol, Coll Econ & Management, Beijing 100124, Peoples R China
  • [ 2 ] [Xie, Rui]Beijing Univ Technol, Coll Econ & Management, Beijing 100124, Peoples R China
  • [ 3 ] [Wang, Qiang]Beijing Univ Technol, Coll Econ & Management, Beijing 100124, Peoples R China
  • [ 4 ] [Li, Jian]Beijing Univ Technol, Coll Econ & Management, Beijing 100124, Peoples R China
  • [ 5 ] [Yang, Ye]Stevens Inst Technol, Sch Syst & Enterprises, Hoboken, NJ 07030 USA

通讯作者信息:

查看成果更多字段

相关关键词:

相关文章:

来源 :

DECISION SUPPORT SYSTEMS

ISSN: 0167-9236

年份: 2022

卷: 157

7 . 5

JCR@2022

7 . 5 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:46

JCR分区:1

中科院分区:1

被引次数:

WoS核心集被引频次: 30

SCOPUS被引频次: 40

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 6

归属院系:

在线人数/总访问数:502/4297103
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司