• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Liu, Shuailing (Liu, Shuailing.) | Ma, Guoyuan (Ma, Guoyuan.) (学者:马国远) | Jia, Xiaoya (Jia, Xiaoya.) | Xu, Shuxue (Xu, Shuxue.) | Wu, Guoqiang (Wu, Guoqiang.)

收录:

EI Scopus SCIE

摘要:

A mechanically-driven loop heat pipe heat rec?overy system by booster and refrigerant pump was proposed to match the all-year fresh air load varying greatly with ambient temperature in an energy recovery ventilation unit and enhance its energy-saving potentials. The system prototype was developed and the experimental setup established in which the booster and pump can operate together or separately. Namely, the prototype could be running in pump-driven loop heat pipe (PLHP) mode, booster-driven loop heat pipe (BLHP) mode or booster combining with pump-driven loop heat pipe (CLHP) mode. The heat transfer characteristics of the prototype running in these three modes under winter and summer conditions were studied, respectively. The results showed that the temperature effectiveness of CLHP was greater than that of PLHP or BLHP under all-year conditions. When outdoor temperature is -15 ?degrees C, the temperature effectiveness of CLHP is 78.0% and 52.5% higher than that of PLHP and BLHP, respectively, and the heating EER of CLHP is 29.6% higher than that of BLHP. When outdoor temperature is 40 ?degrees C, the CLHP has 19.5% higher of temperature effectiveness and 21.7% higher of cooling EER comparing with the BLHP, respectively. In winter, BLHP performs better when outdoor temperature is greater than 7.5 ?degrees C while CLHP performs better when outdoor temperature is lower than 7.5 ?degrees C. And BLHP has better performance when outdoor temperature is lower than 35 ?degrees C in summer while CLHP performs better when outdoor temperature is higher than 35 ?degrees C. The composite system can switch its operating mode according to the fresh air load, which can improve effectively the year-round performance of the system to recover heat in building ventilation.

关键词:

Heat pipe Heat recovery Refrigerant pump Ventilation Booster

作者机构:

  • [ 1 ] [Liu, Shuailing]Beijing Univ Technol, Dept Refrigerat & Cryogen Engn, Beijing 100124, Peoples R China
  • [ 2 ] [Ma, Guoyuan]Beijing Univ Technol, Dept Refrigerat & Cryogen Engn, Beijing 100124, Peoples R China
  • [ 3 ] [Jia, Xiaoya]Beijing Univ Technol, Dept Refrigerat & Cryogen Engn, Beijing 100124, Peoples R China
  • [ 4 ] [Xu, Shuxue]Beijing Univ Technol, Dept Refrigerat & Cryogen Engn, Beijing 100124, Peoples R China
  • [ 5 ] [Wu, Guoqiang]Beijing Univ Technol, Dept Refrigerat & Cryogen Engn, Beijing 100124, Peoples R China

通讯作者信息:

查看成果更多字段

相关关键词:

相关文章:

来源 :

APPLIED THERMAL ENGINEERING

ISSN: 1359-4311

年份: 2022

卷: 207

6 . 4

JCR@2022

6 . 4 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:49

JCR分区:1

中科院分区:1

被引次数:

WoS核心集被引频次: 17

SCOPUS被引频次: 18

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:317/4510341
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司