• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Chen, Liang (Chen, Liang.) | Xu, Shuo (Xu, Shuo.) (学者:徐硕) | Zhu, Lijun (Zhu, Lijun.) | Zhang, Jing (Zhang, Jing.) | Xu, Haiyun (Xu, Haiyun.) | Yang, Guancan (Yang, Guancan.)

收录:

SSCI EI Scopus SCIE

摘要:

Main Path Analysis (MPA) is widely used to trace the developmental trajectory of a technological field through a citation network. The citation-based traversal weight is usually utilized to cherrypick the most significant path. However, the theme of documents along a main path may not be so coherent, and it is very possible to miss the main paths of significant sub-fields overall in a domain. Furthermore, the global path search algorithm in conventional MPA also suffers from high space complexity due to the exhaustive strategy. To address these limitations, a new method, named as semantic MPA (sMPA), is proposed by leveraging semantic information in two steps of candidate path generation and main path selection. In the meanwhile, the resulting source code can be freely accessed. To demonstrate the advantages of our method, extensive experiments are conducted on a patent dataset pertaining to lithium-ion battery in electric vehicle. Experimental results show that our sMPA is capable of discovering more knowledge flows from important subfields, and improving the topical coherence of candidate paths as well.

关键词:

Topic coherence Patent mining Lithium-ion battery Developmental trajectory Main path analysis

作者机构:

  • [ 1 ] [Chen, Liang]Inst Sci & Tech Informat China, Beijing 100038, Peoples R China
  • [ 2 ] [Zhu, Lijun]Inst Sci & Tech Informat China, Beijing 100038, Peoples R China
  • [ 3 ] [Zhang, Jing]Inst Sci & Tech Informat China, Beijing 100038, Peoples R China
  • [ 4 ] [Xu, Shuo]Beijing Univ Technol, Coll Econ & Management, Beijing 100124, Peoples R China
  • [ 5 ] [Xu, Haiyun]Shandong Univ Technol, Business Sch, Zibo 255000, Peoples R China
  • [ 6 ] [Yang, Guancan]Renmin Univ China, Sch Informat Resource Management, Beijing 100872, Peoples R China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

JOURNAL OF INFORMETRICS

ISSN: 1751-1577

年份: 2022

期: 2

卷: 16

3 . 7

JCR@2022

3 . 7 0 0

JCR@2022

ESI学科: SOCIAL SCIENCES, GENERAL;

ESI高被引阀值:27

JCR分区:2

中科院分区:2

被引次数:

WoS核心集被引频次: 15

SCOPUS被引频次: 17

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:243/4535754
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司