• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Xia, Heng (Xia, Heng.) | Tang, Jian (Tang, Jian.) (学者:汤健) | Aljerf, Loai (Aljerf, Loai.)

收录:

EI Scopus SCIE

摘要:

Dioxin (DXN) emission concentration is an important environmental indicator in the municipal solid waste incineration (MSWI) process. The prediction model of DXN emission can be used for pollution control to realize actual requirements of operation optimization. Therefore, a DXN emission concentration prediction model based on improved deep forest regression (ImDFR) is proposed in this study. A feature reduction layer based on out-of-bagging error is first introduced into the ImDFR to eliminate redundant variables and feed all confidence information on DXN emission into the feature enhancement layer of the MSWI process. A deep ensemble stacking model is subsequently built to depict deep features and increase diversity and accuracy using random forests, completely random forests, GBDT, and XGBoost as subforests. Finally, the predicted value of the DXN prediction model is determined in the decision layer. The DXN emission prediction model is verified using actual historical data of two incinerators operated with a daily processing capacity of 800 tons. The experimental results showed that the proposed prediction model presents higher accuracy and better generalization ability than state-of-the-art models.

关键词:

Dioxin emission concentration Ensemble learning Municipal solid waste incineration Feature selection Deep forest regression

作者机构:

  • [ 1 ] [Xia, Heng]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Tang, Jian]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Xia, Heng]Beijing Lab Smart Environm Protect, Beijing 100124, Peoples R China
  • [ 4 ] [Tang, Jian]Beijing Lab Smart Environm Protect, Beijing 100124, Peoples R China
  • [ 5 ] [Aljerf, Loai]Damascus Univ, Fac Sci, Dept Chem, Key Lab Organ Ind, Damascus, Syria

通讯作者信息:

查看成果更多字段

相关关键词:

来源 :

CHEMOSPHERE

ISSN: 0045-6535

年份: 2022

卷: 294

8 . 8

JCR@2022

8 . 8 0 0

JCR@2022

ESI学科: ENVIRONMENT/ECOLOGY;

ESI高被引阀值:47

JCR分区:1

中科院分区:2

被引次数:

WoS核心集被引频次: 57

SCOPUS被引频次: 80

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 4

归属院系:

在线人数/总访问数:578/4285636
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司