• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Ma, Chunjie (Ma, Chunjie.) | Zhuo, Li (Zhuo, Li.) | Li, Jiafeng (Li, Jiafeng.) | Zhang, Yutong (Zhang, Yutong.) | Zhang, Jing (Zhang, Jing.)

收录:

EI Scopus SCIE

摘要:

Anomaly object detection is the core technology in the application for X-ray images. However, the accuracy of current X-ray anomaly object detection method still needs to be improved. In this paper, an effective anomaly object detection network is proposed to improve the detection accuracy of anomaly object for X-ray images. Firstly, learnable Gabor convolution layer, deformable convolution, and spatial attention mechanism are introduced to enhance the representative ability of features in ResNeXt. Then, dense local regression is applied to predict the offset of multiple dense boxes in region proposal to locate the object accurately. At last, bigger discriminative RoI pooling is proposed to classify the candidate boxes to improve the accuracy of object classification. Experimental results on the SIXray and OPIXray datasets show that compared with the state-of-the-art methods, the proposed EAOD-Net can achieve the competitive detection performance.

关键词:

作者机构:

  • [ 1 ] [Ma, Chunjie]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intellige, 100 Pingleyuan, Beijing 100124, Peoples R China
  • [ 2 ] [Zhuo, Li]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intellige, 100 Pingleyuan, Beijing 100124, Peoples R China
  • [ 3 ] [Li, Jiafeng]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intellige, 100 Pingleyuan, Beijing 100124, Peoples R China
  • [ 4 ] [Zhang, Yutong]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intellige, 100 Pingleyuan, Beijing 100124, Peoples R China
  • [ 5 ] [Zhang, Jing]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intellige, 100 Pingleyuan, Beijing 100124, Peoples R China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

IET IMAGE PROCESSING

ISSN: 1751-9659

年份: 2022

期: 10

卷: 16

页码: 2638-2651

2 . 3

JCR@2022

2 . 3 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:49

JCR分区:3

中科院分区:4

被引次数:

WoS核心集被引频次: 15

SCOPUS被引频次: 25

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:470/4978813
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司