收录:
摘要:
Aiming at the non-linear and dynamic characteristics of intermittent process data, a process fault monitoring method based on recurrent autoencoder (RAE) is proposed. To establish monitoring model, an autoencoder is constructed by using long short-term memory (LSTM) recurrent neural network. Compared with the traditional autoencoder, the proposed method can effectively extract the dynamic correlation information between time series samples. Firstly, a three-step expansion method combining batch expansion and variable expansion are used to expand the batch process data into two dimensions, and input sequences for modeling is obtained by sliding window sampling. Then, LSTM is used to reconstruct the input sequences to train an autoencoder model. Moreover, the Squared prediction error (SPE) statistics are constructed based on reconstruction error to achieve on-line monitoring. Finally, the proposed method is applied to penicillin fermentation process for simulation experiment and recombinant Escherichia coli fermentation process monitoring. The results show that the method can detect faults in time and has better monitoring performance. © All Right Reserved.
关键词:
通讯作者信息:
电子邮件地址: