• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhang, Fan (Zhang, Fan.) | Liu, Na (Liu, Na.) | Hu, Yongli (Hu, Yongli.) | Duan, Fuqing (Duan, Fuqing.)

收录:

EI Scopus SCIE

摘要:

Depth maps have been used in many vision tasks due to the real-time acquisition and low cost of consumer depth cameras. However, they still suffer from low precision and severe sensor noise, even with the significant research in depth enhancement. We propose a novel multi-level feature fusion convolutional neural network (CNN) for facial depth map refinement named MFFNet. It is a multi-stage network, where each stage is a local multi-level feature fusion (LMLF) block. For smoothing the noise as well as boosting detailed facial structure, a hierarchical fusion strategy is adopted to fully fuse multi-level features, i.e., an LMLF block fuses multi-level features locally in each stage, while inter-stage skip connections are employed to reach a global multi-level feature fusion. Moreover, the inter-stage skip connections can also ease the training through shortening the information propagation paths. We introduce an effective data augmentation method to synthesize noisy facial depth maps of various poses. Training with these synthetic data improves the robustness of the proposed method to face poses. The proposed method is evaluated with a synthetic facial depth map dataset, a real Kinect V2 facial depth map dataset and the Middlebury Stereo Dataset. Experimental results show that our method produces refined depth maps with high quality and outperforms several state-of-the-art methods.

关键词:

Facial depth map Depth refinement Feature fusion

作者机构:

  • [ 1 ] [Zhang, Fan]Beijing Normal Univ, Coll Artificial Intelligence, 19 Xinjiekouwai St, Beijing 100875, Peoples R China
  • [ 2 ] [Liu, Na]Beijing Normal Univ, Coll Artificial Intelligence, 19 Xinjiekouwai St, Beijing 100875, Peoples R China
  • [ 3 ] [Duan, Fuqing]Beijing Normal Univ, Coll Artificial Intelligence, 19 Xinjiekouwai St, Beijing 100875, Peoples R China
  • [ 4 ] [Zhang, Fan]Beijing Normal Univ, Engn Res Ctr Virtual Real & Applicat, Minist Educ, 19 Xinjiekouwai St, Beijing 100875, Peoples R China
  • [ 5 ] [Liu, Na]Beijing Normal Univ, Engn Res Ctr Virtual Real & Applicat, Minist Educ, 19 Xinjiekouwai St, Beijing 100875, Peoples R China
  • [ 6 ] [Duan, Fuqing]Beijing Normal Univ, Engn Res Ctr Virtual Real & Applicat, Minist Educ, 19 Xinjiekouwai St, Beijing 100875, Peoples R China
  • [ 7 ] [Hu, Yongli]Beijing Univ Technol, Fac Informat Technol, 30 Xueyuan Rd, Beijing 100124, Peoples R China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

SIGNAL PROCESSING-IMAGE COMMUNICATION

ISSN: 0923-5965

年份: 2022

卷: 103

3 . 5

JCR@2022

3 . 5 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:49

JCR分区:2

中科院分区:3

被引次数:

WoS核心集被引频次: 5

SCOPUS被引频次: 6

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:237/4520239
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司