• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Huang, Jie (Huang, Jie.) | Xu, Cheng (Xu, Cheng.) | Ji, Zhaohua (Ji, Zhaohua.) | Xiao, Shan (Xiao, Shan.) | Liu, Teng (Liu, Teng.) | Ma, Nan (Ma, Nan.) | Zhou, Qinghui (Zhou, Qinghui.)

收录:

EI Scopus SCIE

摘要:

Federated learning can effectively protect local data privacy in 5G-V2X environment and ensure data protection in Internet of vehicles environment. The advantages of low delay of 5G network should be better utilized in the vehicle-road cooperative system. But the existing asynchronous federated learning obtains a local model through different node training and completes the update of the global model through the central server. There are problems such as single point of failure, privacy leakage, and deviation of aggregation parameters. In response to the above problems, we proposed a 5G-V2X-oriented asynchronous federated learning privacy-preserving computing model (AFLPC). We used an adaptive differential privacy mechanism to reduce noise while protecting data privacy. A weight-based asynchronous federated learning aggregation update method is proposed to reasonably control the proportion of parameters submitted by users with different training speeds in the aggregation parameters and actively update the aggregation parameters of lagging users, so as to effectively reduce the negative impact on the model caused by the different speed of finding you. Experiments show that the proposed method can effectively ensure the credibility and privacy of asynchronous federated learning in 5G-V2X scenarios and at the same time improve the utility of the model.

关键词:

作者机构:

  • [ 1 ] [Huang, Jie]Beijing Informat Technol Coll, Beijing 100015, Peoples R China
  • [ 2 ] [Ji, Zhaohua]Beijing Informat Technol Coll, Beijing 100015, Peoples R China
  • [ 3 ] [Xiao, Shan]Beijing Informat Technol Coll, Beijing 100015, Peoples R China
  • [ 4 ] [Xu, Cheng]Beijing Union Univ, Beijing Key Lab Informat Serv Engn, Beijing 100101, Peoples R China
  • [ 5 ] [Liu, Teng]Beijing Union Univ, Beijing Key Lab Informat Serv Engn, Beijing 100101, Peoples R China
  • [ 6 ] [Ma, Nan]Beijing Univ Technol, Beijing 100124, Peoples R China
  • [ 7 ] [Zhou, Qinghui]Beijing Univ Civil Engn & Architecture, Beijing 100044, Peoples R China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

SECURITY AND COMMUNICATION NETWORKS

ISSN: 1939-0114

年份: 2022

卷: 2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:46

中科院分区:4

被引次数:

WoS核心集被引频次: 9

SCOPUS被引频次: 33

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:207/5030097
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司