收录:
摘要:
Without additional carbon sources, a low endogenous denitrification rate (EDNR) is the critical factor limiting its application in postdenitrification systems. This study optimized the quantitative distribution of anaerobic carbon source removal pathways based on chemometrics for the first time and explored the effect of anaerobic carbon conversion on anoxic endogenous denitrification. Results showed that enhancing the intracellular carbon storage of glycogen accumulating organisms (GAOs) by optimizing anaerobic duration can effectively improve the EDNR. The anaerobic stage was proposed to end at the peak concentration of polyhydroxyalkanoates (PHAs). A two-stage endogenous denitrification system was established to explore the long-term operating performance before and after optimizing anaerobic duration. Results showed that the average NO3- removal rate increased by 25%. qPCR and optimized stoichiometric analyses indicated that the relative abundance and intracellular carbon storage proportion of GAOs increased by 67% and 25%, respectively. This study provided an effective strategy to improve postdenitrification efficiency.
关键词:
通讯作者信息:
电子邮件地址:
来源 :
BIORESOURCE TECHNOLOGY
ISSN: 0960-8524
年份: 2022
卷: 348
1 1 . 4
JCR@2022
1 1 . 4 0 0
JCR@2022
ESI学科: BIOLOGY & BIOCHEMISTRY;
ESI高被引阀值:43
JCR分区:1
中科院分区:1
归属院系: