• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wang, Xiao Tong (Wang, Xiao Tong.) | Yang, Hong (Yang, Hong.) (学者:杨宏) | Zhou, YaKun (Zhou, YaKun.) | Liu, XuYan (Liu, XuYan.)

收录:

EI Scopus SCIE

摘要:

The treatment performance of anaerobic ammonia oxidation (anammox) immobilized filler on different proportions of domestic wastewater was evaluated. The results showed that, in comparison to synthetic wastewater, 50% domestic wastewater promoted the anammox reaction of immobilized filler, while 100% domestic wastewater had no significant effect on the anammox activity of immobilized filler but the total nitrogen removal efficiency (TNRE) was improved through enhanced denitrification. The TNRE of the immobilized filler was 82.5%, which was significantly higher than that of AnGS (69.7%), and its average anammox contribution rate was more than 90%. This was because the encapsulated anammox biomass could better maintain competitive advantages and coordinate the symbiotic relationship with denitrifying bacteria. Moreover, lower NH4+-N concentration resulted in greater influence of C/N ratio on anammox performance than COD concentration, while the opposite was true at high NH4+-N concentration. This study verified that anammox immobilized filler is effective for mainstream applications.

关键词:

Microbial composition Domestic wastewater Anammox Immobilized filler C/N ratio

作者机构:

  • [ 1 ] [Wang, Xiao Tong]Beijing Univ Technol, Coll Architectural Engn, Key Lab Beijing Water Qual Sci & Water Environm R, Beijing 100124, Peoples R China
  • [ 2 ] [Yang, Hong]Beijing Univ Technol, Coll Architectural Engn, Key Lab Beijing Water Qual Sci & Water Environm R, Beijing 100124, Peoples R China
  • [ 3 ] [Liu, XuYan]Beijing Univ Technol, Coll Architectural Engn, Key Lab Beijing Water Qual Sci & Water Environm R, Beijing 100124, Peoples R China
  • [ 4 ] [Yang, Hong]Beijing Gen Municipal Engn Design & Res Inst Co L, Beijing 100044, Peoples R China
  • [ 5 ] [Zhou, YaKun]Beijing Gen Municipal Engn Design & Res Inst Co L, Beijing 100044, Peoples R China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

BIORESOURCE TECHNOLOGY

ISSN: 0960-8524

年份: 2022

卷: 347

1 1 . 4

JCR@2022

1 1 . 4 0 0

JCR@2022

ESI学科: BIOLOGY & BIOCHEMISTRY;

ESI高被引阀值:43

JCR分区:1

中科院分区:1

被引次数:

WoS核心集被引频次: 12

SCOPUS被引频次: 17

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 4

归属院系:

在线人数/总访问数:1553/4284314
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司