• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Ji, Junzhong (Ji, Junzhong.) (学者:冀俊忠) | Chen, Zhihui (Chen, Zhihui.) | Yang, Cuicui (Yang, Cuicui.)

收录:

EI Scopus SCIE

摘要:

Classification of dynamic functional connectivity (DFC) is becoming a promising approach for diagnosing various neurodegenerative diseases. However, the existing methods generally face the problem of overfitting. To solve it, this paper proposes a convolutional neural network with three sparse strategies named SCNN to classify DFC. Firstly, an element-wise filter is designed to impose sparse constraints on the DFC matrix by replacing the redundant elements with zeroes, where the DFC matrix is specially constructed to quantify the spatial and temporal variation of DFC. Secondly, a 1x1 convolutional filter is adopted to reduce the dimensionality of the sparse DFC matrix, and remove meaningless features resulted from zero elements in the subsequent convolution process. Finally, an extra sparse optimization classifier is employed to optimize the parameters of the above two filters, which can effectively improve the ability of SCNN to extract discriminative features. Experimental results on multiple resting-state fMRI datasets demonstrate that the proposed model provides a better classification performance of DFC compared with several state-of-the-art methods, and can identify the abnormal brain functional connectivity.

关键词:

Symmetric matrices feature extraction Functional magnetic resonance imaging Convolutional neural network resting-state functional Magnetic Resonance Imaging (rs-fMRI) Windows Feature extraction Diseases Sparse matrices Time series analysis sparse strategies dynamic functional connectivity

作者机构:

  • [ 1 ] [Ji, Junzhong]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing Artificial Intelligence Inst, Beijing 100124, Peoples R China
  • [ 2 ] [Chen, Zhihui]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing Artificial Intelligence Inst, Beijing 100124, Peoples R China
  • [ 3 ] [Yang, Cuicui]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing Artificial Intelligence Inst, Beijing 100124, Peoples R China

通讯作者信息:

查看成果更多字段

相关关键词:

来源 :

IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS

ISSN: 2168-2194

年份: 2022

期: 3

卷: 26

页码: 1219-1228

7 . 7

JCR@2022

7 . 7 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:46

JCR分区:1

中科院分区:1

被引次数:

WoS核心集被引频次: 6

SCOPUS被引频次: 10

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 7

归属院系:

在线人数/总访问数:2679/4240090
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司