收录:
摘要:
With the advantages of avoiding land-use competition, biomass from agricultural residues is a promising solution to alleviate the energy crisis and environmental problems. In the traditional biomass utilization management problem, few studies have considered that land and water are key resources for the sustainable development of biomass from a life cycle view. Concerning the complex food-water-energy nexus, this paper focuses on the synergetic management of crop planting structure and biomass utilization as a whole system. An integrated framework is proposed for the co-optimization of cropland distribution and biomass utilization pathway under multiple uncertainties. Base on interval programming and fuzzy set theory, a type-2 fuzzy interval linear programming model is developed to handle multiple uncertainties with various characteristics and provide the optimum strategies for decision makers with different risk preferences. The proposed framework is verified by a case study of Hebei Province, China. Moreover, the impacts of water shortage and the implementation of the carbon price on the optimized strategies, economic and environmental benefits are investigated to provide deeper management insights when facing complex external factors. The obtained results suggest that corn and wheat will still be the primary crops, and bioethanol production will gain priority in the biomass utilization pathways for economic purposes. Water resources availability will greatly affect the crop planting allocation as well as total benefits but barely influence the biomass utilization pathways. Furthermore, with the implementation of the carbon trade market, a higher carbon price will stimulate biomass pellets production to replace fossil fuel consumption and improve the economic benefits directly.
关键词:
通讯作者信息:
电子邮件地址:
来源 :
JOURNAL OF CLEANER PRODUCTION
ISSN: 0959-6526
年份: 2022
卷: 335
1 1 . 1
JCR@2022
1 1 . 1 0 0
JCR@2022
ESI学科: ENGINEERING;
ESI高被引阀值:49
JCR分区:1
中科院分区:1
归属院系: