Indexed by:
Abstract:
Integrating pesticides and mineral elements into a multi-functional stimuli-responsive nanocarrier can have a synergistic effect on protecting plants from pesticides and the supply of nutrients. Herein, a pH dual-responsive multifunctional nanosystem regulated by coordination bonding using bimodal mesoporous silica (BMMs) as a carrier and coordination complexes of ferric ion and polymethacrylic acid (PMAA/Fe3+) as the gatekeeper was constructed to deliver prochloraz (Pro) for the smart treatment of wilt disease (Pro@BMMs-PMAA/Fe3+). The loading capacity of Pro@BMMs-PMAA/Fe3+ nanoparticles (Nps) was 24.0% and the "PMMA/Fe3+" complexes deposited on the BMMs surface could effectively protect Pro against photodegradation. The nanoparticles possessed an excellent pH dual-responsive release behavior and better inhibition efficacy against Rhizoctonia solani. Fluorescence tracking experiments showed that Nps could be taken up and transported in fungi and plants, implying that non-systemic pesticides could be successfully delivered into target organisms. Furthermore, BMMS-PMAA/Fe3+ nanocarriers could effectively promote the growth of crop seedlings and had no obvious toxicological influence on the cell viability and the growth of bacteria. This study provides a novel strategy for enhancing plant protection against diseases and reducing the risk to the environment.
Keyword:
Reprint Author's Address:
Email:
Source :
NANOMATERIALS
Year: 2022
Issue: 4
Volume: 12
5 . 3
JCR@2022
5 . 3 0 0
JCR@2022
ESI Discipline: MATERIALS SCIENCE;
ESI HC Threshold:66
JCR Journal Grade:1
CAS Journal Grade:3
Cited Count:
WoS CC Cited Count: 19
SCOPUS Cited Count: 23
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 3
Affiliated Colleges: