• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Liu, Zhansheng (Liu, Zhansheng.) | Yuan, Chao (Yuan, Chao.) | Sun, Zhe (Sun, Zhe.) | Cao, Cunfa (Cao, Cunfa.)

收录:

EI Scopus SCIE

摘要:

Civil infrastructure O&M requires intelligent monitoring techniques and control methods to ensure safety. Unfortunately, tedious modeling efforts and the rigorous computing requirements of large-scale civil infrastructure have hindered the development of structural research. This study proposes a method for impact response prediction of prestressed steel structures driven by digital twins (DTs) and machine learning (ML). The high-fidelity DTs of a prestressed steel structure were constructed from the perspective of both a physical entity and virtual entity. A prediction of the impact response of prestressed steel structure's key parts was established based on ML, and a structure response prediction of the parts driven by data was realized. To validate the effectiveness of the proposed prediction method, the authors carried out a case study in an experiment of a prestressed steel structure. This study provides a reference for fusion applications with DTs and ML in impact response prediction and analysis of prestressed steel structures.

关键词:

machine learning prestressed steel structure digital twins prediction analysis impact response

作者机构:

  • [ 1 ] [Liu, Zhansheng]Beijing Univ Technol, Fac Architecture Civil & Transportat Engn, Beijing 100124, Peoples R China
  • [ 2 ] [Yuan, Chao]Beijing Univ Technol, Fac Architecture Civil & Transportat Engn, Beijing 100124, Peoples R China
  • [ 3 ] [Sun, Zhe]Beijing Univ Technol, Fac Architecture Civil & Transportat Engn, Beijing 100124, Peoples R China
  • [ 4 ] [Cao, Cunfa]Beijing Univ Technol, Fac Architecture Civil & Transportat Engn, Beijing 100124, Peoples R China
  • [ 5 ] [Liu, Zhansheng]Beijing Univ Technol, Minist Educ, Key Lab Urban Secur & Disaster Engn, Beijing 100124, Peoples R China
  • [ 6 ] [Yuan, Chao]Beijing Univ Technol, Minist Educ, Key Lab Urban Secur & Disaster Engn, Beijing 100124, Peoples R China
  • [ 7 ] [Sun, Zhe]Beijing Univ Technol, Minist Educ, Key Lab Urban Secur & Disaster Engn, Beijing 100124, Peoples R China
  • [ 8 ] [Cao, Cunfa]Beijing Univ Technol, Minist Educ, Key Lab Urban Secur & Disaster Engn, Beijing 100124, Peoples R China

通讯作者信息:

查看成果更多字段

相关关键词:

相关文章:

来源 :

SENSORS

年份: 2022

期: 4

卷: 22

3 . 9

JCR@2022

3 . 9 0 0

JCR@2022

ESI学科: CHEMISTRY;

ESI高被引阀值:53

JCR分区:2

中科院分区:2

被引次数:

WoS核心集被引频次: 10

SCOPUS被引频次: 12

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 4

归属院系:

在线人数/总访问数:2899/4276738
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司