收录:
摘要:
A photonics-assisted frequency conversion and self-interference cancellation approach is proposed and experimentally demonstrated for in-band full-duplex (IBFD) communication. Carrier suppressed single sidebands (CS-SSB) of the intermediate frequency (IF) signal and the local oscillator (LO) signal are simultaneously obtained through the X-DPMZM in a dual-polarization dual-parallel Mach-Zehnder (DP-DPMZM) modulator. A transmit signal with high purity is produced, and a shared LO optical sideband is also provided for the subsequent downconversion. The carrier suppressed double sideband (CS-DSB) modulation for the signal of interest (SOI) is achieved via the Y-DPMZM. The self-interference signal is suppressed by adjusting the bias voltage of its main MZM. An optical bandpass filter (OBPF) is combined to realize frequency downconversion. The experimental results show that the spurious-free dynamic range (SFDR3) is 102.6 dB/Hz(2/3) for frequency upconversion, a cancellation depth of more than 50 dB for single-frequency self-interference cancellation (SIC), and more than 22 dB for wideband SIC. The proposed link has superiority in multifunctionality, including in-band transmission, reception, and self-interference cancellation, with a shared LO.
关键词:
通讯作者信息:
电子邮件地址:
来源 :
JOURNAL OF LIGHTWAVE TECHNOLOGY
ISSN: 0733-8724
年份: 2022
期: 3
卷: 40
页码: 607-614
4 . 7
JCR@2022
4 . 7 0 0
JCR@2022
ESI学科: ENGINEERING;
ESI高被引阀值:49
JCR分区:1
中科院分区:2
归属院系: