• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Liu, Tongtong (Liu, Tongtong.) | Cui, Lingli (Cui, Lingli.) | Zhang, Jianyu (Zhang, Jianyu.) | Zhang, Chao (Zhang, Chao.)

收录:

EI Scopus SCIE

摘要:

Under complex working conditions with noise interference, the fault feature of planetary gearbox is difficult to be extracted and the fault mode is difficult to be identified. To tackle this problem, the technologies of variable multi-scale morphological filtering (VMSMF) and average multi-scale double symbolic dynamic entropy (AMDSDE) are proposed in this paper. VMSMF selects Chebyshev Window as the structural element and automatically selects the optimal-scale parameters according to the signal characteristics of the planetary gearbox, which improves the filtering accuracy and calculation efficiency. AMDSDE fully considers the correlation between various state modes. Once combined with relevant knowledge of Mathematical statistics, the algorithm can effectively reduce misjudgment. Firstly, the turn domain resampling (TDR) is used to transform the time domain signal of variable speed into the angle domain signal that is not affected by speed change. Secondly, the proposed VMSMF is used to de-noise the vibration signal, and the fault signal with a high signal-to-noise ratio is obtained. Finally, AMDSDE is used to extract the entropy value of the fault signal and judge the fault type. The proposed technology is verified by four kinds of signals collected from the sun gear of the planetary gearbox under non-stationary working conditions.

关键词:

VMSMF Planetary gearbox Fault diagnosis Fault pattern recognition AMDSDE

作者机构:

  • [ 1 ] [Liu, Tongtong]Beijing Univ Technol, Key Lab Adv Mfg Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Cui, Lingli]Beijing Univ Technol, Key Lab Adv Mfg Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Zhang, Jianyu]Beijing Univ Technol, Key Lab Adv Mfg Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Liu, Tongtong]Inner Mongolia Univ Sci & Technol, Inner Mongolia Key Lab Intelligent Diag & Control, Baotou 014010, Peoples R China
  • [ 5 ] [Zhang, Chao]Inner Mongolia Univ Sci & Technol, Inner Mongolia Key Lab Intelligent Diag & Control, Baotou 014010, Peoples R China

通讯作者信息:

  • [Cui, Lingli]Beijing Univ Technol, Key Lab Adv Mfg Technol, Beijing 100124, Peoples R China;;

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY

ISSN: 0268-3768

年份: 2022

期: 11-12

卷: 124

页码: 3947-3961

3 . 4

JCR@2022

3 . 4 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:49

JCR分区:2

中科院分区:3

被引次数:

WoS核心集被引频次: 9

SCOPUS被引频次: 11

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

归属院系:

在线人数/总访问数:140/4518178
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司