• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Li, Shizhen (Li, Shizhen.) | Liu, Naihao (Liu, Naihao.) | Li, Fangyu (Li, Fangyu.) | Gao, Jinghuai (Gao, Jinghuai.) | Ding, Jicai (Ding, Jicai.)

收录:

EI Scopus SCIE

摘要:

Delineating seismic faults is one of the main steps in seismic structure interpretation. Recently, deep learning (DL) models are used to automatic seismic fault interpretation. For the DL-based models, there are two widely used techniques, which can enhance the model performance, that is, data augmentation (DA) and ensemble learning (EL). Qualitatively and quantificationally analyzing the performances of these two techniques is a rarely studied domain. In this study, we make detailed comparisons between the DL models using DA and EL. For the DL model with DA, we first build a holistically nested Unet (HUnet) model by adopting the holistically nested module to the widely used Unet model. Then, we train a HUnet model by using the original and its augmented synthetic datasets (HUnet-D model for short). Besides, we train a Unet model in the same way as a comparison (Unet-D model for short). On the other hand, for the DL model with EL, we first obtain several individual HUnet models separately trained by only using a type of the augmented datasets for each time. Next, we propose a data-driven EL model to integrate these HUnet models. Specially, we propose an adjoint-net module for the EL model to extract the multi-scale features from seismic data, which benefits for checking and fine-tuning the fusing results. Finally, we qualitatively and quantificationally evaluate these DL models (Unet-D, HUnet-D, and EL-HUnet) using the synthetic validation dataset. Moreover, we apply these models to 3-D field data volumes for automatic fault interpretation. Compared with the coherence attribute, Unet-D and HUnet-D models, we find that the EL-HUnet model achieves the comparable model performance for effectively enhancing the precision and continuity of the detected faults.

关键词:

Unet Convolutional neural network (CNN) ensemble learning (EL) holistically nested Unet (HUnet) seismic fault delineation Three-dimensional displays data augmentation (DA) Data models Training Deep learning Solid modeling Computational modeling Coherence

作者机构:

  • [ 1 ] [Li, Shizhen]Xi An Jiao Tong Univ, Coll Artificial Intelligence, Xian 710049, Shaanxi, Peoples R China
  • [ 2 ] [Liu, Naihao]Xi An Jiao Tong Univ, Sch Informat & Commun Engn, Xian 710049, Shaanxi, Peoples R China
  • [ 3 ] [Gao, Jinghuai]Xi An Jiao Tong Univ, Sch Informat & Commun Engn, Xian 710049, Shaanxi, Peoples R China
  • [ 4 ] [Li, Fangyu]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intellige, Engn Res Ctr Digital Community, Fac Informat Technol,Minist Educ, Beijing 100124, Peoples R China
  • [ 5 ] [Li, Fangyu]Beijing Univ Technol, Beijing Lab Urban Mass Transit, Beijing 100124, Peoples R China
  • [ 6 ] [Ding, Jicai]Res Inst China Natl Offshore Oil Corp CNOOC, Technol Res & Dev Ctr, Geophys Key Lab, Beijing 100029, Peoples R China
  • [ 7 ] [Ding, Jicai]Natl Engn Lab Offshore Oil Explorat, Beijing 100029, Peoples R China

通讯作者信息:

查看成果更多字段

相关关键词:

相关文章:

来源 :

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

ISSN: 0196-2892

年份: 2022

卷: 60

8 . 2

JCR@2022

8 . 2 0 0

JCR@2022

ESI学科: GEOSCIENCES;

ESI高被引阀值:38

JCR分区:1

中科院分区:1

被引次数:

WoS核心集被引频次: 44

SCOPUS被引频次: 56

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 13

归属院系:

在线人数/总访问数:2118/4267302
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司