• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Jiang, Qiuping (Jiang, Qiuping.) | Liu, Zhentao (Liu, Zhentao.) | Gu, Ke (Gu, Ke.) | Shao, Feng (Shao, Feng.) | Zhang, Xinfeng (Zhang, Xinfeng.) | Liu, Hantao (Liu, Hantao.) | Lin, Weisi (Lin, Weisi.)

收录:

EI Scopus SCIE

摘要:

Numerous single image super-resolution (SISR) algorithms have been proposed during the past years to reconstruct a high-resolution (HR) image from its low-resolution (LR) observation. However, how to fairly compare the performance of different SISR algorithms/results remains a challenging problem. So far, the lack of comprehensive human subjective study on large-scale real-world SISR datasets and accurate objective SISR quality assessment metrics makes it unreliable to truly understand the performance of different SISR algorithms. We in this paper make efforts to tackle these two issues. Firstly, we construct a real-world SISR quality dataset (i.e., RealSRQ) and conduct human subjective studies to compare the performance of the representative SISR algorithms. Secondly, we propose a new objective metric, i.e., KLTSRQA, based on the Karhunen-Loeve Transform (KLT) to evaluate the quality of SISR images in a no-reference (NR) manner. Experiments on our constructed RealSRQ and the latest synthetic SISR quality dataset (i.e., QADS) have demonstrated the superiority of our proposed KLTSRQA metric, achieving higher consistency with human subjective scores than relevant existing NR image quality assessment (NR-IQA) metrics. The dataset and the code will be made available at https://github.com/Zhentao-Liu/RealSRQ-KLTSRQA.

关键词:

Single image super-resolution Measurement Degradation real-world Quality assessment no-reference metric Image segmentation Karhunen-Loeve transform Computer science Cameras Superresolution image quality assessment

作者机构:

  • [ 1 ] [Jiang, Qiuping]Ningbo Univ, Sch Informat Sci & Engn, Ningbo 315211, Peoples R China
  • [ 2 ] [Liu, Zhentao]Ningbo Univ, Sch Informat Sci & Engn, Ningbo 315211, Peoples R China
  • [ 3 ] [Shao, Feng]Ningbo Univ, Sch Informat Sci & Engn, Ningbo 315211, Peoples R China
  • [ 4 ] [Gu, Ke]Beijing Univ Technol, Beijing Artificial Intelligence Inst,Engn Res Ctr, Fac Informat Technol,Beijing Key Lab Computat Int, Minist Educ,Beijing Lab Smart Environm Protect, Beijing 100124, Peoples R China
  • [ 5 ] [Zhang, Xinfeng]Univ Chinese Acad Sci, Sch Comp Sci & Technol, Beijing 101408, Peoples R China
  • [ 6 ] [Liu, Hantao]Cardiff Univ, Sch Comp Sci & Informat, Cardiff CF10 3AT, Wales
  • [ 7 ] [Lin, Weisi]Nanyang Technol Univ, Sch Comp Sci & Engn, Singapore 639798, Singapore

通讯作者信息:

查看成果更多字段

相关关键词:

相关文章:

来源 :

IEEE TRANSACTIONS ON IMAGE PROCESSING

ISSN: 1057-7149

年份: 2022

卷: 31

页码: 2279-2294

1 0 . 6

JCR@2022

1 0 . 6 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:49

JCR分区:1

中科院分区:1

被引次数:

WoS核心集被引频次: 76

SCOPUS被引频次: 93

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:550/4955232
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司